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ABSTRACT
A hypergraph is a generalization of a graph that arises naturally

when we consider attribute-sharing among entities. Although a

hypergraph can be converted into a graph by expanding its hy-

peredges into fully connected subgraphs, going the reverse way

is computationally complex and NP-complete. We hence hypoth-

esize that a hypergraph contains more information than a graph.

Moreover, it is more convenient to manipulate a hypergraph di-

rectly, rather than expanding it into a graph. An open problem in

hypergraphs is how to accurately and efficiently calculate their

node distances. Once node distances are defined, we can find a

node’s nearest neighbors, and perform label propagation on hyper-

graphs using a K-nearest neighbors (KNN) approach. In this paper,

we propose two methods to achieve this. In the first, we compute

expected hitting times of random walks on a hypergraph as node

distances; in the second, we generalize the DeepWalk method to

hypergraphs. We note that simple random walks (SRW) cannot

accurately describe highly complex real-world hypergraphs, which

motivates us to introduce frustrated random walks (FRW) to bet-

ter describe them. Using real-world datasets, we show that FRW

and DeepWalk can beat SRW with a large margin. For large and

sparse hypergraphs, our method for computing the expected hitting

times of random walks is approximately linear in time complexity,

rendering it superior to the DeepWalk method.
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1 INTRODUCTION
A graph is a useful data structure for describing complex relations

in real world. In a graph, nodes are connected by edges, and each

edge contains exactly two nodes. A hypergraph is an extension

of ordinary graphs where each hyperedge of a hypergraph may

contain an arbitrary number of nodes (see Fig. 4 in appendix for

an illustration). In the special case where each hyperedge contains

just two nodes, the hypergraph reduces to a graph. Each hyperedge

of a hypergraph is considered a clique in a graph. We can therefore

convert a hypergraph to a graph by expanding each hyperedge.

However, hypergraphs contain more information than what can
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be encapsulated into its expanded graphs. If we simply expand a

hypergraph into a graph, the explicit information of the cliques

is lost. Although the conversion from hypergraphs to graphs is

reversible in theory, the NP-completeness of detecting maximal

cliques in a graphs renders it irreversible in practice. Furthermore,

the expansion of hyperedges can be computationally expensive and

memory-intensive considering that a hyperedge of 𝑁 nodes yields

𝑁 (𝑁 − 1)/2 undirected edges in a graph. It is hence advantageous

to directly work with hypergraphs whenever possible rather than

operating on their expanded graph derivation.

One of the central problems in graph theory is the quantitative

determination of graph node distances. The literature has multiple

algorithms that achieve this, such as DeepWalk[1], graphSAGE[2],

hitting times of random walks[3] and frustrated random walks[4],

among others. We can easily generalize DeepWalk to hypergraphs,

yet for the other algorithms, such generalization is highly non-

trivial. In this paper, we generalize frustrated random walks to

hypergraphs, and show that the approach is on par with the perfor-

mance of DeepWalk even for complicated hypergraphs. There are

four reasons that motivate using frustrated random walks (FRW) as

opposed to DeepWalk. First, in applications where the goal is to find

the nearest neighbors of a few nodes in a large hypergraph, FRW

is a preferable and faster option than DeepWalk. Second, FRW con-

veniently gives a closed-form and interpretable solution for node

distances, a solution that is impossible to obtain using any deep-

learning based method. Third, FRW does not require any parameter

tuning, whereas DeepWalk requires heavy investment in parameter

tuning. Finally, and unlike in DeepWalk, the node distances of FRW

are asymmetric, rendering it more suitable to describe real-world

relationships which are generally asymmetric and non-reflective.

A hypergraph consists of nodes and hyperedges. Each hyperedge

is a subset of the node set V. For clarity purpose, we use in this

paper Latin letters to indicate node indices and Greek letters to

indicate hyperedge indices. The incidence matrix of a hypergraph

is defined as:

𝑒𝑖𝛼 =

{
𝑤, if vertex 𝑣𝑖 ∈ 𝐸𝛼
0, otherwise

(1)

In the above definition,𝑤 is the weight of vertex 𝑣𝑖 in hyperedge

𝐸𝛼 . If the hypergraph is unweighted, then𝑤 = 1 always holds. If we

think of 𝑣𝑖 as a member of a community 𝐸𝛼 , then 𝑒𝑖𝛼 can be thought

of as the loyalty of 𝑣𝑖 to 𝐸𝛼 . By definition, the degree of a node 𝑣𝑖
is 𝐷𝑖 =

∑
𝛼 𝑒𝑖𝛼 , and the degree of a hyperedge is 𝛿𝛼 =

∑
𝑖 𝑒𝑖𝛼 . We

can think of 𝛿𝛼 as the adhesiveness of 𝐸𝛼 .

Researchers have long used random walks to study hypergraphs.

In Ref. [5], the authors generalized spectral clustering [6–8] from

graphs to hypergraphs and gave their algorithm a random walk in-

terpretation. It is however noted that the hypergraph random walks

defined in Ref. [5] is no different from the random walks performed
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on expanded graphs [9, 10]. Since a hyperedge in a hypergraph

represents a more adhesive community, it is argued in [11] that

a random walker roaming on a hypergraph should show prefer-

ence towards hyperedges of higher degrees (stronger adhesiveness).

Timoteo Carletti et al. thus proposed an alternative random walk al-

gorithm that takes the hyperedge degree into account. In this paper,

we will generalize the method described in Ref. [11] to weighted hy-

pergraphs, and introduce frustrated random walks on hypergraphs.

We will show that for scale-free hypergraphs, frustrated random

walks is more suitable for computing node distances.

2 A UNIFIED FRAMEWORK FOR
CALCULATING EXPECTED HITTING TIMES
OF RANDOMWALKS

With the abundance of research on random walks on hypergraphs,

we note that almost all of the previous works have focused on the

Laplacianmatrix. Laplacianmatrices invoke spectral clustering[6, 8]

which naturally leads to image segmentation and community detec-

tion in hypergraphs. Furthermore, the eigenvectors of a Laplacian

matrix yield node embeddings which enable us to apply power-

ful machine learning algorithms to perform node classification on

hypergraphs. Since the study of the Laplacian matrix yields infor-

mation about the long-term stationary distribution of particles that

are randomly walking on hypergraphs, we label this approach of

studying random walks the stationary approach. On the other hand,

we can also extract much information about hypergraphs by focus-

ing on the diffusion process itself, and we label this way of studying

random walks the dynamic approach. In this paper, we will focus

on the hitting times of random walks. Given a hypergraph 𝐻 , we

select a node 𝑡 as target, and perform random walks starting from

any other node 𝑠 . The hitting time for this process is defined as

the number of steps a random walker needs to traverse before it

hits the target 𝑡 for the first time. By definition, the hitting time

on a given hypergraph is a random variable that depends on the

hypergraph structure, the starting node 𝑠 and target node 𝑡 , and can

thus be denoted as 𝑁
(𝑠)
𝑡 . The expectation of 𝑁

(𝑠)
𝑡 provides a natural

measurement of the distance from 𝑠 to 𝑡 . Note that the distance

here is asymmetric, meaning that the distance from 𝑠 to 𝑡 is not

guaranteed to be identical to that from 𝑡 to 𝑠 . Since we want to

use the expected hitting time to measure the closeness between

two persons in the real world, and we know that the real-world

human-human relationships are generally asymmetric, this lack of

symmetry is thus a blessing to us.

The dynamics of random walks on hypergraphs are fully cap-

tured by the transition matrix, and different definitions of transition

matrices produce different results. We calculate hypergraph node

distances to find nearest neighbors of a node. To accomplish this,

we select a node as the target, and calculate the expected hitting

times starting from all other nodes. We then rank all those nodes

according to their distances to the target. Intuitively, we expect that

the shorter a node’s distance to the target, the closer they should

be. If we represent real-world human-human interactions using

a hypergraph, we could find a person’s close friends from among

his/her nearest neighbors in the hypergraph.

2.1 Simple random walks on hypergraphs
As already stated, the calculation of hypergraph hitting times re-

quires specification of the random walk algorithm. To capture the

preference of a random walker towards a more cohesive hyperedge,

we define transition probability from node 𝑖 to node 𝑗 as

𝑇𝑆
𝑖 𝑗,𝑖≠𝑗 =

∑
𝛼

(
𝛿𝛼 − 𝑒𝑖𝛼

)
min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 }∑

𝑗

∑
𝛼

(
𝛿𝛼 − 𝑒𝑖𝛼

)
min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 }

(2)

The mechanism behind Eq. (2) is that a random walker standing on

site 𝑖 would randomly select one of its neighbors 𝑗 towards which

it makes a transition. A transition from 𝑖 to 𝑗 is possible only when

both nodes belong to the same hyperedge. In a hypergraph that

represents real-world human-human interactions, the node weight

𝑒𝑖𝛼 measures the loyalty of the node to the hyperedge which is

interpreted as a community. Intuitively, two loyal nodes tend to

have high frequency interactions, and two disloyal nodes tend not to

interact with each other. The interaction frequency between a loyal

node say 𝑖 and a disloyal node say 𝑗 depends on how disloyal 𝑗 is to

the community. Thus, when calculating the transition probability

from 𝑖 to 𝑗 , we demand that the probability should be proportional

to the lesser of the two node weights, i.e., min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 }, rather than
their product 𝑒𝑖𝛼𝑒 𝑗𝛼 . The proportionality coefficient 𝛿𝛼 − 𝑒𝑖𝛼 in

front of min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 } reflects the tendency of a node to stay within
a more cohesive community (a hyperedge of higher degree). The

denominator in Eq. (2) is the normalization constant.

2.2 Frustrated random walks on hypergraphs
Although simple random walks as described in the previous subsec-

tion is a good algorithm for exploring hypergraph properties and

can be used to generate random paths for DeepWalk, we find that

the hitting times derived from this algorithm is not a good measure

of node distances when the hypergraph is heavily weighted and

scale-free[12]. The fact that most real-world human-human interac-

tions can be recast into a scale-free network compels us to develop

an alternative random walk scenario which we call the frustrated
random walks algorithm[4], an algorithm that takes into account

how people interact with each other in the real world. Real world

networks are mostly dominated by the Mathew effect. For example,

in a social network, the more followers you have, the easier it is for

you to attract new followers, a phenomenon that is called prefer-

ential attachment[12]. The advantage of frustrated random walks

over simple random walks is that it can yield node distances that

are consistent with human judgment even for heavily weighted,

scale-free networks. For networks that are lightly weighted or non-

scale-free, the results from frustrated and simple random walks are

similar to each other.

In order to measure node distances on hypergraphs, we set one

node (call it 𝑡 ) as the target, and perform randomwalks starting from

another node (call it 𝑠). The expected hitting time of this random

walk process is interpreted as the distance from 𝑠 to 𝑡 . Intuitively,

the shorter the distance, the closer the relationship between 𝑠 and 𝑡 .

We can think of this random walk process as the donation of a gift.

If one person has one gift to donate, she tends to donate it to her

close friend. Similarly, when a person is given more than one gift,

she also tends to accept her close friend’s. With this observation,
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we decompose the gift-donating process into two parts: one for

proposing the donation, and another for accepting the donation.

By setting an acceptance threshold for the gift donation, we have

frustrated the gift donation process. In this scenario, a transition is

possible only when a proposal is made and then accepted. Therefore,

in frustrated randomwalks, the transition probability is the product

of the proposal probability and the acceptance probability, which is

𝑇 𝐹
𝑖 𝑗,𝑖≠𝑗 =

∑
𝛼

(
𝛿𝛼 − 𝑒𝑖𝛼

)
min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 }∑

𝑗

∑
𝛼

(
𝛿𝛼 − 𝑒𝑖𝛼

)
min{𝑒𝑖𝛼 , 𝑒 𝑗𝛼 }

(3)

×

∑
𝛽

(
𝛿𝛽 − 𝑒 𝑗𝛽

)
min{𝑒 𝑗𝛽 , 𝑒𝑖𝛽 }∑

𝑘

∑
𝛽

(
𝛿𝛽 − 𝑒 𝑗𝛽

)
min{𝑒 𝑗𝛽 , 𝑒𝑘𝛽 }

Another major difference between simple random walks and

frustrated random walks is that in the former case, the proposal

to make a transition is always accepted and thus 𝑇𝑆
𝑖𝑖

= 0,∀𝑖 ∈ V,
whereas in the latter case, there is a non-zero probability for the

proposal to be declined, and thus 𝑇 𝐹
𝑖𝑖

is generally non-zero. The

diagonal values of 𝑇 𝐹
matrix can be easily calculated from the

observation that

∑
𝑗 𝑇

𝐹
𝑖 𝑗

= 1,∀𝑖, 𝑗 ∈ V, from which we have

𝑇 𝐹
𝑖𝑖 = 1 −

∑︁
𝑗≠𝑖

𝑇 𝐹
𝑖 𝑗 ,∀𝑖 ∈ V. (4)

All of these differences combined impact significantly on the cal-

culation of average hitting times and ultimately the ranking of

nodes with respect to a target node. We will show later, using

real-world data, that frustrated random walks can better capture

human-human interactions in the real world than simple random

walks.

2.3 A Unified framework for calculating
expected hitting times

In the previous subsections, we outline simple random walks and

frustrated random walks on hypergraphs, and give formulae for cal-

culating their corresponding transition probabilities. In this section,

we will continue to calculate their average hitting times from the

transition probabilities. It will be seen that although the transition

probabilities differ from each other, the calculation of expected

hitting times can be formulated in a unified framework.

For a connected hypergraph 𝐻 , denote 𝑁
(𝑠)
𝑡 as the hitting time

of a random walk process that starts from node 𝑠 , with node 𝑡

as the target. We use 𝑃 (𝑁 (𝑠)𝑡 = 𝑛) to denote the probability of

reaching target node 𝑡 from node 𝑠 after exactly 𝑛 steps. Since the

problem is trivial for the case when 𝑠 = 𝑡 , here we demand that

the starting node 𝑠 should differ from the target node 𝑡 . Due to

the Markov property of the random walk process, whether it be

simple or frustrated, we can establish a recurrence equation for the

probability, which is

𝑃 (𝑁 (𝑠)𝑡 = 𝑛) =
∑︁
𝑖𝑠≠𝑡

𝑇𝑠,𝑖𝑠𝑃 (𝑁
(𝑖𝑠 )
𝑡 = 𝑛 − 1), 𝑛 ≥ 2 (5)

A physical interpretation of the above equation is that we decom-

pose the the random walk process into two steps. First, we make

a transition from node 𝑠 to one of its neighbors 𝑖𝑠 ; second, due

to the Markov property of the random walks, the whole process

restarts all over again with 𝑖𝑠 as the new starting node, with the

condition that now the random walker needs to reach the target

with exactly 𝑛−1 steps since one step has already been taken. Thus,

Eq. (5) is a recurrence equation for the probabilities 𝑃 (𝑁 (𝑠)𝑡 = 𝑛).
In this equation, we have imposed the condition that 𝑛 ≥ 2 because

𝑃 (𝑁 ( 𝑗)𝑡 = 0) = 0 for any node 𝑗 ≠ 𝑡 , and the recursion process

terminates immediately when the random walker hits the target.

From the transition matrix, we can readily read out the probabil-

ity 𝑃 (𝑁 (𝑠)𝑡 = 1), which is the initial condition for the recurrence

relation in Eq. (5).

Eq. (5) is essentially a system of first order difference equa-

tions with constant coefficients. For simplicity of notation, we

can understand 𝑁
(𝑖)
𝑡 as the 𝑖th component of a column vector

𝑵𝑡 , and 𝑃 (𝑁 (𝑖)𝑡 = 𝑛) as the 𝑖th component of a column vector

𝑿𝑛 = 𝑃 (𝑵𝑡 = 𝑛). With these symbols, we can rewrite Eq. (5) in an

abstract form as

𝑿𝑛 = 𝐵𝑿𝑛−1, 𝑛 ≥ 2. (6)

Here, 𝐵 is the coefficient matrix with elements depending on the

transition probabilities and the target node 𝑡 .

2.3.1 Calculation of 𝐵 matrix for simple random walks. For simple

randomwalks, 𝐵𝑖 𝑗 = 𝑇𝑆
𝑖 𝑗
,∀𝑖, 𝑗 ∈ V−{𝑡}, and 𝐵𝑖𝑡 = 0,∀𝑖 ∈ V−{𝑡} by

definition of Eq. (5). Still from Eq. (5), we have that the left subscript

of 𝐵, which is the index of the starting node for the random walk,

can never be equal to 𝑡 . In contrast with the transition matrix 𝑇𝑆
,

matrix 𝐵 is not a Markov matrix because the summation of each

row is not always equal to one. This non-Markov property of 𝐵

originates from the existence of the target node 𝑡 . The rule is that if 𝑡

is not a neighbor of node 𝑖 , then
∑

𝑗 𝐵𝑖 𝑗 = 1, or else

∑
𝑗 𝐵𝑖 𝑗 = 1−𝑇𝑆

𝑖𝑡
.

Because of this, the spectral radius of 𝐵 is always smaller than one.

We have established Eq. (5) to calculate the probability distribu-

tion of hitting times using any non-target node 𝑠 as our starting

node. However, if the starting node 𝑠 is pretty special in that it

has only one single neighbor, and this very neighbor is precisely

the target node 𝑡 , then no recurrence equation is needed since we

already have 𝑃 (𝑁 (𝑠)𝑡 = 𝑛) = 𝛿𝑛,1,∀𝑛 ≥ 1. We call such a node an

adherent node of target node 𝑡 , and exclude these nodes from the

set of starting nodes (For example, node 4 in Fig. 4 is an adherent

to target node 3. ).

Definition 1. In random walks, a node is called adherent to the
target if the node has the target as its only neighbor.

Since we need to exclude target node 𝑡 and its adherent nodes

from the starting node set, the dimension of matrix 𝐵 is

𝑁𝐵 = |V − {𝑡}| − |{𝑣𝑖 : 𝑇𝑆
𝑖𝑡 = 1}|, (7)

where |S| indicates the cardinality of a set S. Obviously, for simple

random walks, the hitting time from an adherent to the target is

always equal to one.

2.3.2 Calculation of 𝐵 matrix for frustrated random walks. The
calculation of 𝐵 matrix elements for frustrated random walks is

similar to that for simple random walks. Here, we still have 𝐵𝑖 𝑗 =

𝑇 𝐹
𝑖 𝑗
,∀𝑖, 𝑗 ∈ V− {𝑡} and 𝐵𝑖𝑡 = 0,∀𝑖 ∈ V− {𝑡}. The existence of target

node 𝑡 still renders 𝐵 a non-Markov matrix in that

∑
𝑗 𝐵𝑖 𝑗 = 1 if
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𝑖 and 𝑡 do not lie simultaneously in any hyperedge, and

∑
𝑗 𝐵𝑖 𝑗 =

1 −𝑇 𝐹
𝑖𝑡

otherwise. The only difference is that due to the imposition

of the acceptance threshold for the frustrated random walks, the

transition probability from an adherent to the target no longer

obeys the sharp 𝛿 distribution, but a geometric distribution, i.e.,

𝑃 (𝑁 (𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑡 )𝑡 = 𝑛) = (1 − 𝑝)𝑛−1𝑝 , where 𝑝 is the probability of

𝑡 accepting the transition from the adherent. Consequently, the

expected hitting time from the adherent to the target is 1/𝑝 .

2.3.3 Numerical computation of expected hitting times. Now that

we have calculated the elements of 𝐵 matrix, we can continue to

solve Eq. (6) as

𝑿𝑛 = 𝐵𝑛−1𝑿1, 𝑛 ≥ 1. (8)

Here, 𝑿1 is the probability of hitting the target in the first step, a

probability that can be conveniently read out from the transition

matrix. By definition, the expected hitting times from an arbitrary

node to the target node is

E𝑵𝑡 =

∞∑︁
𝑛=1

𝑛𝑃 (𝑵𝑡 = 𝑛) :=
∞∑︁
𝑛=1

𝑛𝑿𝑛 (9)

Plugging Eq. (8) into the above definition yields an expression for

the expected hitting times that depends both on the initial condition

𝑿1 and the coefficient matrix 𝐵, that is,

E𝑵𝑡 =

∞∑︁
𝑛=1

𝑛𝐵𝑛−1𝑿1 (10)

The above equation involves an infinite summation and the pow-

ers of the 𝐵 matrix, and is thus difficult to compute numerically.

However, we can devise an ingenious method to convert the above

equation into an equivalent linear system of equations which we

can efficiently solve using highly optimized linear algebra pack-

ages. To do this, we first define the probability generating function,

which is

𝒇 (𝑧) =
∞∑︁
𝑛=1

𝑿𝑛𝑧
𝑛, |𝑧 | ≤ 1. (11)

It is easy to show that the convergence radius of the above power

series is larger than 1. More precisely, we can pinpoint the conver-

gence radius of the series in Eq. (11) at 𝑅 = 1/𝜌 (𝐵), where 𝜌 (𝐵) is
the spectral radius of the coefficient matrix 𝐵. 𝜌 (𝐵) is guaranteed to
be smaller than one by the Gershgorin circle theorem[13]. With the

help of Eq. (8), the probability generating function can be evaluated

exactly as

𝒇 (𝑧) =
∞∑︁
𝑛=1

𝐵𝑛−1𝑿1𝑧
𝑛

(12)

= 𝑧 (𝐼 − 𝑧𝐵)−1𝑿1, |𝑧 | ≤ 1.

Here, the summation can be evaluated in closed form because the

convergence radius of the power series is larger than one. Still

due to the fact that convergence radius is larger than 1, we can

differentiate the infinite series in Eq. (11) term by term at 𝑧 = 1 and

obtain an equivalent expression for the expected hitting times as

𝒇 ′(𝑧 = 1) =
∞∑︁
𝑛=1

𝑛𝐵𝑛−1𝑿1𝑧
𝑛−1

���
𝑧=1

(13)

= E𝑵𝑡

Therefore, once we have the probability generating function, we can

easily calculate the expected hitting times. An example of calculat-

ing expected hitting times using this method is given in Appendix.

However, when the dimension of 𝐵 is huge, analytical evaluation of

Eq. (11) is computationally prohibitive, which compels us to resort

to numerical methods. Multiplying both sides of Eq. (12) with 𝐼 −𝑧𝐵
and taking first order derivative with respect to 𝑧 at 𝑧 = 1 yields

(𝐼 − 𝐵)𝒇 ′(𝑧 = 1) = 𝒇 (𝑧 = 1) (14)

By definition, 𝒇 (𝑧 = 1), which is the sum of all probabilities, is a

column vector with each element being 1. Therefore, to calculate

expected hitting times E𝑵𝑡 = 𝒇 ′(𝑧 = 1), we only need to solve

the linear equation (14), which is easy to do numerically. It is note-

worthy that in Eq. (14), the coefficient matrix 𝐵 depends both on

the hypergraph structure and the target node 𝑡 , and thus target

information is implicit in that equation. For real-world hypergraph

data, the coefficient matrix in Eq. (14) is generally large and sparse.

The best method to numerically solve a large and sparse system is

the conjugate gradient method[14] or its variants, which we will

use throughout our paper.

Our method for calculating hypergraph node distances can be

summarized in Algorithm 1. For sake of simplicity, we only show

how to calculate expected hitting times of simple randomwalks. The

extension of this algorithm to frustrated random walks is straight-

forward.

Algorithm 1 CalculateExpectedHittingTime(H, t)

Input: hypergraph 𝐻

target node 𝑡

Return: expected hitting times 𝑁𝑡

1: Calculate transition probabilities using Eq. (2).

2: Set node 𝑡 as the target.

3: Calculate transition matrix 𝐵 from hypergraph structure and

target node 𝑡 , following the procedures in Section 2.3.1.

4: 𝑑 ← 𝐵.𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

5: 𝑜𝑛𝑒𝑠 ← vector of all 1’s, 𝑠ℎ𝑎𝑝𝑒 = (𝑑, 1)
6: Solve (𝐼 − 𝐵)𝑥 = 𝑜𝑛𝑒𝑠 using conjugate gradient method.

7: Obtain expected hitting times 𝑁𝑡 ← 𝑥

3 EXPERIMENTAL RESULTS
In the previous sections, we have outlined two random walk algo-

rithms, the simple random walk (SRW) and frustrated random walk

(FRW), and showed that we can compute their expected hitting

times in a unified framework. In this section, we will use real-world

hypergraph data sets to show that we can use the expected hitting

times as node distances to find each node’s nearest neighbors. We

will also compare their results with that of DeepWalk.
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3.1 Hypergraphs with ground-truth node labels
In this section, we will test our methods using two hypergraph data

sets with ground truth node labels. We construct the first dataset

from arXiv and get the second dataset from Ref. [15].

First, we create hypergraphs using articles published in arXiv

under the category of physics from 2017 to 2020. Hypergraph nodes

represent articles, and articles written by the same author are col-

lected into the same hyperedge. From the hypergraph, we extract

its largest connected component, which contains 52144 nodes and

45188 hyperedges. The node and hyperedge degree distributions are

shown in Fig. 1. In this data set, node (article) degree represents the

number of authors of the article. Here, the node degree distribution

just approximately follows the power law due to the fact that in

modern world most of papers have more than one author. However,

when we plot the hyperedge (author) degree distribution, the power

law emerges since there is neither upper limit nor lower limit on

the number of articles that can be authored by the same researcher.
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Figure 1: Log-log plot of node and hyperedge degree distri-
bution for arXiv data set.

Each arXiv article has one or more subjects, which we can use

as its ground truth label. Using the methods described in this paper,

we can calculate hypergraph node distances, and thus find each

article’s nearest neighbors. Intuitively, the shorter the distance

between two articles, the more similar they should be to each other.

We can quantify two articles’ similarity by calculating the Jaccard

similarity between their subjects. For comparison, we find each

article’s nearest neighbors using SRW, FRW and DeepWalk, and

calculate the mean Jaccard similarity between the target article and

its top ten nearest neighbors. For one specific article, each method

gives a mean Jaccard similarity score. The higher the mean Jaccard

similarity, the better the method. We randomly select 12 articles,

and for each method, calculate these 12 articles’ average Jaccard

similarity score. The average score for each method is shown in

Table 1.

From table 1, we can see that FRW has the highest Jaccard sim-

ilarity, which is shown in bold type in the table. Although FRW

performs obviously better than SRW, and is almost on par with

DeepWalk, we claim that the biggest advantage of FRW over SRW

is that it can best describe node similarities for heavily-weighted

Method name SRW FRW DeepWalk

Jaccard similarity 0.4092 0.4615 0.4599

Table 1: Comparison of Jaccard similarities of three methods.
Twelve articles are randomly selected, and each article’s top
ten nearest neighbors are calculated using three different
methods. For each article, we calculate themean Jaccard simi-
larity between the target article’s subjects and its neighboring
article’s subjects. Finally, for each method, we calculate the
mean Jaccard similarity of the twelve articles.

and scale-free hypergraphs, the results for which will be shown in

the next section.

The second dataset, called trivago-clicks dataset[16], is con-

structed by authors of Ref. [15] from users’ browsing behavior in

trivago while the users are trying to book a hotel via trivago.com. In

this hypergraph dataset, nodes represent accommodations (mostly

hotels) the users browse, and hyperedges represent a user’s brows-

ing history in the same browsing session before the user clicks out

(an order is placed). Each node (accommodation) is located in a

country, which can be used as the node’s label. The dataset con-

tains 172,738 nodes and 233,202 hyperedges. The number of distinct

node labels (countries or regions) is 160. The node degree follows a

power law, yet the node degrees are generally small, ranging from

1 to 339. The node degree log-log distribution is shown in Fig. 2.
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Figure 2: Log-log plot of node degree distribution for trivago
data set.

Using SRW, FRW and DeepWalk, we can calculate each node’s

nearest neighbors. Generally, we expect a node and its nearest

neighbors to be located in the same country, thus having the same

node label. We can quantify this similarity by counting what is the

proportion of nearest neighbors having the same label as that of the

target node. We still randomly select 12 nodes from this hypergraph,

and calculate the similarity between a target node and its top 100

nearest neighbors using the three methods. The results are shown

in Table 2. For this dataset, the results from the three methods are

almost the same, with more than 97% nearest neighbors having the

same label as that of the target node, indicating the effectiveness of

all three methods in detecting nearest neighbors.
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Method name SRW FRW DeepWalk

Similarity 0.9708 0.9775 0.9792

Table 2: Comparison of similarities resulting from SRW, FRW
and DeepWalkmethods. A larger similarity indicates a better
method.

3.2 Heavily-weighted and Scale-free
hypergraphs

A hypergraph is called scale-free if its node degree distribution

follows a power law. A hypergraph is called heavily weighted if its

node degrees range through several orders of magnitude. Power law

distribution is ubiquitous in real world, e.g., the wealth distribution

among the world population, the number of followers of social me-

dia accounts, the citation times of scientific papers, etc. According

to Ref. [12], when constructing a graph, if we follow the preferential

attachment principle, which means we prefer to attach a newly

created node to an existing node of higher degree, then the resultant

graph will be a scale-free graph. A scale-free hypergraph can also

be constructed in this manner. In a scale-free graph or hypergraph,

the nodes accumulate their degrees according to the Matthew ef-

fect, meaning that the higher a node’s degree, the easier it is for its

degree to get even higher. Frustrated random walk method is just

designed to capture the Matthew effect. Consequently, the advan-

tage of FRW is most obvious for heavily-weighted and scale-free

hypergraphs, as we will show in this section.

We first show our results on a hypergraph that we created from

Dream of the Red Chamber, a novel written by Cao Xueqin. We

represent novel characters as hypergraph nodes, and each scene in

the novel as a hyperedge. Characters are collected into a hyperedge

if they appear in the same scene in the novel. Node degree indicates

the number of times a node (character) appears in the novel. Just

as we expected, the node degree distribution follows a power law,

as shown in Fig 3. The node degrees range from 1 to 954, meaning

the hypergraph is heavily weighted. We will show that for such a

hypergraph, the FRW method is most suitable for calculating node

distances.
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Figure 3: Log-log plot of node degree distribution in Dream
of the Red Chamber.

Unlike the arXiv hypergraph, here we do not have ground truth

labels for nodes, and thus here we will compare our random walk

results against DeepWalk results. The fact that DeepWalk results

are consistent with human judgement justifies our employment

of DeepWalk results as our benchmark. We first run DeepWalk on

the hypergraph to obtain a node ranking with respect to a target

node, and then use SRW and FRWmethods to get nearest neighbors

of the target. Thus, with respect to each target node, we obtain

three rankings using three methods. We then calculate the rank

difference between SRW/FRW results and DeepWalk results. To

do this, we get the top 10 neighbors of a target node using the

SRW/FRW method, find the mean DeepWalk ranking for these 10

neighbors, and finally obtain for each target node the difference

between mean DeepWalk rankings and mean SRW/FRW rankings.

We summarize the rank differences for several nodes in table 3. To

make the results representative enough, we selected three kinds of

nodes (characters) from the novel: the central characters of highest

node degrees, the supporting characters of medium node degrees,

and themarginal characters of low node degrees. It can be seen from

the table that for this data set, FRW is much better at finding nearest

neighbors of central nodes than SRW. For marginal nodes of low

node degrees, the difference between FRW and SRW is negligible.

As a second test, we create a hypergraph using Harry Potter nov-
els written by J.K. Rowling. Nodes represent novel characters, and

characters that appear in the same scene are collected into the same

hyperedge. We use SRW, FRW, and DeepWalk to find the nearest

neighbors of Harry Potter, and list our results in Table 4. From

the table, we can see that the results from FRW and DeepWalk are

consistent with human judgment, yet SRW results are not what we

expect. This corroborates our assertion that FRW is more suitable

than SRW for describing real-world human relationships.

4 TIME COMPLEXITY OF THE EXPECTED
HITTING TIME METHOD

In Algorithm 1, we have outlined our method for calculating ex-

pected hitting times. For large hypergraphs, the most time con-

suming part of the algorithm is the numerical solution of equation

(𝐼 − 𝐵)𝑥 = 1. For large and sparse coefficient matrix 𝐵, we can only

solve this equation using conjugate gradient method or its variants.

Conjugate gradient method involves a series of iteration cycles, and

the most time consuming part of each cycle is the evaluation of

𝐵𝑣 , where 𝐵 is the probability transition matrix and 𝑣 is a dense

vector. Thus, the time complexity of our method as described in

Algorithm 1 is 𝑁𝑖𝑡𝑒𝑟 ×𝑂 (𝐵𝑣), where 𝑁𝑖𝑡𝑒𝑟 is the iteration number

in conjugate gradient method and 𝑂 (𝐵𝑣) is the time complexity of

evaluating 𝐵𝑣 . We will determine 𝑂 (𝐵𝑣) first.
From Eq. (2) and Eq. (3), we can see that each of the summation∑
𝑗 𝐵𝑖 𝑗𝑣 𝑗 requires 𝐷𝑖 + 1 operations, where 𝐷𝑖 is the node degree

of vertex 𝑖 . Thus, the total number of operations required for com-

puting 𝐵𝑣 is
∑
𝑖 (𝐷𝑖 + 1) = 2𝐸 +𝑉 , where 𝐸 is the edge number (the

number of edges if we expand all hyperedges in the hypergraph)

and 𝑉 is the node number. We thus have 𝑂 (𝐵𝑣) = 2𝐸 +𝑉 .

To determine 𝑁𝑖𝑡𝑒𝑟 , we need to note that conjugate gradient

method is guaranteed to give the exact solution after exactly 𝑁𝐵

iterations, where 𝑁𝐵 ≲ 𝑉 is the dimension of the coefficient matrix.

However, for most cases, conjugate gradient method already gives
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Target node Jia Baoyu Wang Xifeng Lin Daiyu Jia Zheng Jia Tanchun Jia Huan Jia Yucun Zhen Shiyin Wang Yitie

Node degree 954 554 488 279 188 94 56 22 1

SRW rank diff 99.44 86.33 41.22 74.56 53.33 43.33 0.22 0.0 0.67

FRW rank diff 7.33 0.78 4.11 4.44 4.67 16.44 0.33 0.0 2.33

Table 3: Rank difference between SRW/FRW and DeepWalk for different target nodes in Dream of the Red Chamber data set.
Target nodes are ranked from high to low node degrees. For central nodes of high degrees, the differences between FRW and
DeepWalk ranking results are much smaller than that for SRW, indicating that the ranking results of FRW are more consistent
with DeepWalk results. Yet for marginal nodes of low degrees, the ranking results from SRW, FRW and DeepWalk are equally
good.

SRW FRW DeepWalk

Hokey Ron Weasley Ron Weasley

Morfin Gaunt Hermione Granger Hermione Granger

Merope Gaunt Severus Snape Albus Dumbledore

Marge Dursley Sirius Black Severus Snape

Mafalda Hopkirk Fred Weasley Ginny Weasley

Ignotus Peverell George Weasley Minerva McGonagall

Helena Ravenclaw Albus Dumbledore Voldemort

Cole Rubeus Hagrid Rubeus Hagrid

Mary Cattermole Ginny Weasley Fred Weasley

Mary Riddle Draco Malfoy Sirius Black

Table 4: Nearest neighbors of Harry Potter according to dif-
ferent methods.

results of high precision when 𝑁𝑖𝑡𝑒𝑟 ≪ 𝑁𝐵 . We can thus consider

𝑁𝑖𝑡𝑒𝑟 to be a small constant number compared to 𝑁𝐵 .

We can thus get the time complexity of our algorithm as𝑂 (2𝐸 +
𝑉 ), with the understanding that 𝑁𝑖𝑡𝑒𝑟 is a small constant number.

For real-world hypergraphs, we generally have 𝐸 ∝ 𝑉 . In such a

case, the time complexity can be simplified to𝑂 (𝑉 ). Thus, the time

complexity of our method is approximately linear with respect to

the hypergraph size. This linear time complexity for the compu-

tation of expected hitting times of random walks is a significant

advantage it has compared to the DeepWalk method.

5 COMPARISON OF RUNNING SPEEDS
In the previous sections, we have shown that to find a node’s nearest

neighbors using SRW/FRWmethods, we only need to construct the

transition matrix from hypergraph structure and the target node,

and solve a system of linear equations using conjugate gradient

method, the time complexity of which is approximately linear. How-

ever, if we want to accomplish this using DeepWalk, we need to map

all the nodes to vectors, calculate the cosine distances between the

target node vector and all the other node vectors, and finally rank

all the other nodes with respect to the target according to cosine

distances. The node mapping could be pretty time consuming, thus

rendering the DeepWalk inferior in speed compared to SRW/FRW

methods.

To compare the running speeds of these methods, we test our

program on three data sets (arXiv,Dream of Red Chamber, andHarry
Potter) using a Linux system with 64 processors. When running

DeepWalk, we generate random paths by walking 3200 steps start-

ing from each node in the hypergraph, and use word2vec[17, 18]

method to map each node to a vector of size 128. To accelerate

the program, the generation of random paths is fully parallelized.

To obtain the running speeds for SRW and FRW methods, we ran-

domly select some nodes as targets, and calculate the mean and

standard deviation of the times spent on these nodes. The timing

results are shown in Table 5.

As can be seen from the table, the running speeds of SRW and

FRW are much faster than DeepWalk. SRW is even faster than FRW,

yet as we have shown in the previous sections, for complicated hy-

pergraphs, SRW cannot yield results that are on par with DeepWalk

or FRW.

Data set arXiv Dream of Red Chamber Harry Potter
DeepWalk 841 8.28 5.72

SRW 3.79 ± 0.17 0.012 ± 0.0002 0.0086 ± 0.0003
FRW 20.12 ± 0.4 0.026 ± 0.0005 0.018 ± 0.012

Table 5: Running times of DeepWalk, SRW and FRWon three
data sets. All the numbers have seconds as unit.

6 CONCLUSION
In this paper, we have introduced two methods for computing

node distances, one based on random walk method, and another

based on DeepWalk method. Random walk method includes both

simple and frustrated random walks, the expected hitting times

of which can be exactly computed in a unified framework. We

used the expected hitting times of both random walk scenarios to

measure node distances on hypergraphs, and tested our methods

on several real-world datasets. We showed that for lightly weighted

hypergraphs, simple random walk, frustrated random walk and

DeepWalk give similar results, whereas for scale-free and heavily

weighted hypergraphs, frustrated random walk is more suitable for

calculating node distances. We finally analyzed the time complexity

of our random walk method, and showed that it is approximately

of linear time complexity.
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A COMPUTATION OF EXPECTED HITTING
TIMES ON AN ARTIFICIAL HYPERGRAPH

In this section, we illustrate the procedures of calculating expected

hitting times of frustrated random walks on an artificial hyper-

graph. Monte Carlo simulations are used to validate our numerical

results. The expected hitting times of simple random walks can be

calculated in a similar manner. We use the hypergraph in Fig. 4 as

our example.

0

1

2

4

3

hyperedge 0 hyperedge 1

hyperedge 2

Figure 4: An example hypergraph

In this hypergraph, there are five nodes and three hyperedges.

Its incidence matrix is

𝑒 =

©­­­­­«
1 0 0

1 0 0

1 1 0

0 1 1

0 0 1

ª®®®®®¬
(15)

We use node 3 as the target node, and calculate the expected hitting

times of frustrated random walks starting from nodes {0, 1, 2, 4}.

First note that, according to our definition in section 2.3, node 4

is an adherent to target node 3, since node 4 has the target node

as its only neighbor. From Eq. (3), we can see that the transition

probability from node 4 to 3 is 𝑝 = 1

2
. Thus, the expected hitting

time from node 4 to 3 is E𝑁
(4)
3

= 1

𝑝 = 2. Next we focus on the

calculation of expected hitting times starting from nodes {0, 1, 2}.

From Eq. (3) and Eq. (5), we can establish a system of difference

equations for the hitting time probabilities, which is

𝑿𝑛 = 𝐵𝑿𝑛−1, 𝑛 ≥ 2, (16)

where the hitting time probability vector is

𝑿𝑛 =
©­­«
𝑃 (𝑁 (0)

3
= 𝑛)

𝑃 (𝑁 (1)
3

= 𝑛)
𝑃 (𝑁 (2)

3
= 𝑛)

ª®®¬ , (17)

and the probability transition matrix is

𝐵 =
©­«
11/20 1/4 1/5
1/4 11/20 1/5
1/5 1/5 1/2

ª®¬ . (18)

To solve Eq. (16), we need the initial condition which is 𝑿1 =(
0 0

1

10

)𝑇
. The probability generating function as

𝒇 (𝑧) = 𝑧 (𝐼 − 𝑧𝐵)−1𝑿1 (19)

=
1

𝑧 (16𝑧 − 65) + 50
©­«

𝑧2

𝑧2

(5 − 4𝑧)𝑧

ª®¬
Taking the first order derivative of the above equation, we can

obtain the expected hitting times as

E𝑵3 = 𝒇 ′(𝑧 = 1) = ©­«
35

35

30

ª®¬ (20)

We can similarly obtain the above results using Eq. (14), which

is

E𝑵3 = (𝐼 − 𝐵)−1𝒇 (𝑧 = 1) = ©­«
35

35

30

ª®¬ (21)

To validate the above results, we write a Monte Carlo program

to simulate the random walk process. Running the Monte Carlo

simulation 100K times, we obtain the mean value of the hitting

times starting from nodes {0, 1, 2, 4}. Monte Carlo simulation re-

sults and exact results are shown together in Table 6. From the

table, we can see that exact results are consistent with Monte Carlo

simulation results, which justifies our computational method. For

large hypergraphs, it is impractical to run Monte Carlo simulations
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Expected hitting times Analytical result Monte Carlo result

E𝑁
(0)
3

35 34.91879

E𝑁
(1)
3

35 35.00548

E𝑁
(2)
3

30 30.03275

E𝑁
(4)
3

2 1.99335

Table 6: Expected hitting times of frustrated random walks
on hypergraph 4 with node 3 as target, starting from nodes
{0, 1, 2, 4}, using both analytical and Monte Carlo simulation
methods.

because it is too time consuming. In this case, we will only use

numerical methods to compute the expected hitting times.
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