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ABSTRACT
Graph Neural Networks (GNNs) have achieved prominent success

in many graph-based learning problems, such as credit risk as-

sessment in financial networks and fake news detection in social

networks. However, the trained GNNs still make errors and these

errors may cause serious negative impact on society. Model editing,
which corrects the model behavior on wrongly predicted target

samples while leaving model predictions unchanged on unrelated

samples, has garnered significant interest in the fields of computer

vision and natural language processing. However, model editing for

graph neural networks (GNNs) is rarely explored, despite GNNs’

widespread applicability. To fill the gap, we first observe that ex-

isting model editing methods significantly deteriorate prediction

accuracy (up to 50% accuracy drop) in GNNs while a slight accuracy

drop in multi-layer perception (MLP). The rationale behind this

observation is that the node aggregation in GNNs will spread the

editing effect throughout the whole graph. This propagation pushes

the node representation far from its original one. Motivated by this

observation, we propose Editable Graph Neural Networks (EGNN),

a neighbor propagation-free approach to correct the model pre-

diction on misclassified nodes. Specifically, EGNN simply stitches

an MLP to the underlying GNNs, where the weights of GNNs are

frozen during model editing. In this way, EGNN disables the propa-

gation during editing while still utilizing the neighbor propagation

scheme for node prediction to obtain satisfactory results. Experi-

ments demonstrate that EGNN outperforms existing baselines in

terms of effectiveness (correcting wrong predictions with lower

accuracy drop), generalizability (correcting wrong predictions for
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other similar nodes), and efficiency (low training time and memory)

on various graph datasets.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have achieved prominent results

in learning features and topology of graph data [1–12]. Based on

spatial message passing, GNNs learn each node through aggregating

representations of its neighbors and the node itself recursively.

Once trained, the model is typically deployed as static artifacts

to make decisions on a wide range of tasks, such as credit risk

assessment in financial networks [13] and fake news detection

in social networks [14]. However, the cost of making a wrong

decision could be higher in these graph applications. Over-trusted

creditworthiness on borrowers can lead to severe loss for lenders,

and failure detection of fake news has a serious negative impact on

society.

Ideally, it is desirable to correct these serious errors and general-

ize corrections to similar mistakes, while preserving the model’s

prediction accuracy on unrelated input samples. To obtain general-

ization ability for similar samples, the most prevalent method is to

fine-tune the model with a new label on the single example to be

corrected. However, this approach often spoils the model predic-

tion on other unrelated samples. To cope with the challenge, many

model editing frameworks have been proposed to adjust model

behaviors by correcting errors as they appear [15–18]. Specifically,

these editors usually require an additional training phase to help

the model “prepare” for the editing process before applying any

edits [15–18].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Although model editing has shown promise to modify vision

and language models, to the best of our knowledge, there is no

existing work tackling the critical mistakes in graph data. Despite

the straightforward concept, it is challenging to efficiently change

GNNs’ behaviors on the massively connected nodes. First, due

to the message-passing mechanism in GNNs, editing the model

behavior on a single node can propagate changes across the en-

tire graph, significantly altering the node’s original representation,

which may destroy the prediction performance on the training

dataset. Therefore, compared to the neural networks for computer

vision or natural language processing, it is harder to maintain the

model prediction on other input samples. Second, unlike other

types of neural networks, the input nodes are connected in the

graph domain. Thus, when editing the model prediction on a single

node using gradient descent, the representation of each node in

the whole graph is required [2, 19, 20]. This distinction introduces

complexity and computational challenges when making targeted

adjustments to GNNs, especially on large graphs.

In this work, we delve into studying the graph model editing

problem, which is more challenging than the independent sam-

ple edits. We first observe the existing editors significantly harm

the overall node classification accuracy although the misclassified

nodes are corrected. The test accuracy drop is up to 50%, which

prevents GNNs from being practically deployed. We experimen-

tally study the rationale behind this observation from the lens of

loss landscapes. Specifically, we visualize the loss landscape of the

Kullback-Leibler (KL) divergence between node embeddings ob-

tained before and after the model editing process in GNNs. We

found that a slight weight perturbation can significantly enlarge

the KL divergence. In contrast, other types of neural networks, such

as Multi-Layer Perceptrons (MLPs), exhibit a much flatter region

of the KL loss landscape and display greater robustness against

weight variations. Such observations align with our viewpoint that

after editing on misclassified samples, GNNs are prone to widely

propagating the editing effect and affecting the remaining nodes.

Based on the sharp loss landscape of model editing in GNNs,

we propose Editable Graph Neural Network (EGNN ), a neighbor

propagation-free approach to correct the model prediction on the

graph data. Specifically, suppose we have a well-trained GNN and

we aim to correct its prediction on some of the misclassified nodes.

EGNN stitches a randomly initialized MLP to the trained GNN. We

then train the MLP for a few iterations to ensure that it does not sig-

nificantly alter the model’s prediction. When performing the edit,

we only update the parameter of the stitched MLP while freezing

the parameter of GNNs during the model editing process. In particu-

lar, the node embeddings from GNNs are first inferred offline. Then

MLP learns an additional representation, which is then combined

with the fixed embeddings inferred from GNNs to make the final

prediction. When a misclassified node is received, the gradient is

back propagated to update the parameters of MLP instead of GNNs’.

In this way, we decouple the neighbor propagation process of learn-
ing the structure-aware node embeddings from the model editing
process of correcting the misclassified nodes. Thus, EGNN disables
the propagation during editing while still utilizing the neighbor

propagation scheme for node prediction to obtain satisfactory re-

sults. Compared to directly applying the existing model editing

methods to GNNs:

• We can leverage the GNNs’ structure learning meanwhile avoid-

ing the spreading edition errors to guarantee the overall node

classification task.

• The experimental results validate our solution which could ad-

dress all the erroneous samples and deliver up to 90% improve-
ment in overall accuracy.

• Via freezing GNNs’ part, EGNN is scalable to address misclassified

nodes in the million-size graphs. We save more than 2× in terms

of memory footprint and model editing time.

2 PRELIMINARY
Graph Neural Networks. Let G = (V, E) be an undirected graph

with V = (𝑣1, · · · , 𝑣 |V | ) and E = (𝑒1, · · · , 𝑒 | E | ) being the set of

nodes and edges, respectively. Let 𝑿 ∈ R |V |×𝑑
be the node feature

matrix. 𝑨 ∈ R |V |× |V |
is the graph adjacency matrix, where 𝑨𝑖, 𝑗 =

1 if (𝑣𝑖 , 𝑣 𝑗 ) ∈ E else𝑨𝑖, 𝑗 = 0.
˜𝑨 = �̃�− 1

2 (𝑨+𝑰 )�̃�− 1

2 is the normalized

adjacency matrix, where �̃� is the degree matrix of 𝑨 + 𝑰 . In this

work, we are mostly interested in the task of node classification,

where each node 𝑣 ∈ V is associated with a label 𝑦𝑣 , and the

goal is to learn a representation 𝒉𝑣 from which 𝑦𝑣 can be easily

predicted. To obtain such a representation, GNNs follow a neural

message passing scheme [21]. Specifically, GNNs recursively update

the representation of a node by aggregating representations of

its neighbors. For example, the 𝑙 th Graph Convolutional Network

(GCN) layer [21] can be defined as:

𝑯 (𝑙+1) = ReLU( ˜𝑨𝑯 (𝑙 )
𝚯
(𝑙 ) ), (1)

where 𝑯 (𝑙 )
is the node embedding matrix containing the 𝒉𝑣 for

each node 𝑣 at the 𝑙 th layer and 𝑯 (0) = 𝑿 .𝚯
(𝑙 )

is the weight matrix

of the 𝑙 th layer.

The Model Editing Problem. The goal of model editing is to alter

a base model’s output for a misclassified sample 𝑥𝑒 as well as its

similar samples via model finetuning only using a single pair of

input 𝑥𝑒 and desired output 𝑦𝑒 while leaving model behavior on

unrelated inputs intact [15–17]. We are the first to propose the

model editing problem in graph data, where the decision faults on a

small number of critical nodes can lead to significant financial loss

and/or fairness concerns. For the node classification, suppose a well-

trained GNN incorrectly predicts a specific node.Model editing is

used to correct the undesirable prediction behavior for that node

by using the node’s features and desired label to update the model.

Ideally, the model editing ensures that the updated model makes

accurate predictions for the specific node and its similar samples

while maintaining the model’s original behavior for the remaining

unrelated inputs. Some model editors, such as the one presented

in this paper, require a training phase before they can be used for

editing.

3 PROPOSED METHODS
In this section, we first empirically show vanilla model editing per-

forms extremely worse for GNNs compared with MLPs due to node

propagation (Section 3.1). Intuitively, due to the message-passing

mechanism in GNNs, editing the model behavior on a single node

can propagate changes across the entire graph, significantly alter-

ing the node’s original representation. Then through visualizing
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Table 1: The test accuracy (%) before (“w./o. edit”) and after
editing (“w./ edit”) on one single data point. Δ Acc is the accu-
racy drop before and after performing the edit. All results are
averaged over 50 simultaneous model edits. The best result
is highlighted by bold faces.

GCN GraphSAGE MLP

Cora

w./o. edit 89.4 86.6 71.8

w./ edit 84.36 82.06 68.33

Δ Acc. 5.03↓ 4.53↓ 3.46 ↓

Flickr

w./o. edit 51.19 49.03 46.77

w./ edit 13.94 17.15 36.68
Δ Acc. 37.25↓ 31.88↓ 10.08 ↓

Reddit

w./o. edit 95.52 96.55 72.41

w./ edit 75.20 55.85 69.86

Δ Acc. 20.32↓ 40.70↓ 2.54 ↓

ogbn-arxiv

w./o. edit 70.20 68.38 52.65

w./ edit 23.70 19.06 45.15
Δ Acc. 46.49↓ 49.31↓ 7.52↓

the loss landscape, we found that for GNNs, even a slight weight

perturbation, the node representation will be far away from the

original one (Section 3.2). Based on the observation, we propose a

propagation-free GNN editing method called EGNN (Section 3.3).

3.1 Motivation: Model Editing may Cry in GNNs
Setting:We train GCN, GraphSAGE, and MLP on Cora, Flickr,

Reddit, and ogbn-arxiv, respectively, following the training setup

as described in Section 5. To evaluate the difficulty of editing, we
ensured that the node to be edited was not present during training,
meaning that the models were trained inductively. Specifically, we
trained the model on a subgraph containing only the training node

and evaluated its performance on the validation and test set of nodes.

Next, we selected a misclassified node from the validation set and

applied gradient descent only on that node until the model made

a correct prediction for it. Following previous work [15, 17], we

perform 50 independent edits and report the averaged test accuracy

before and after performing a single edit.

Results: As shown in Table 1, we observe that (1) GNNs consis-
tently outperform MLP on all the graph datasets before editing.

This is consistent with the previous graph analysis results, where

the neural message passing involved in GNNs extracts the graph

topology to benefit the node representation learning and thereby

the classification accuracy. (2) After editing, the accuracy drop of

GNNs is significantly larger than that of MLP. For example, Graph-

SAGE has an almost 50% drop in test accuracy on ogbn-arxiv after

editing even a single point. MLP with editing even delivers higher

overall accuracies on Flickr and ogbn-arxiv compared with GNN-

based approaches. One of the intuitive explanations is the slightly

fine-tuned weights in MLP mainly affect the target node, instead

of other unrelated samples. However, due to the message-passing

mechanism in GNNs, the edited node representation can be prop-

agated over the whole graph and thus change the decisions on a

large area of nodes. These comparison results reveal the unique

challenge in editing the correlated nodes with GNNs, compared

with the conventional neural networks working on isolated sam-

ples. (3) After editing, the test accuracy of GCN, GraphSAGE, and

MLP become too low to be practically deployed. This is quite differ-

ent to the model editing problems in computer vision and natural

language processing, where the modified models only suffer an

acceptable accuracy drop.

3.2 Sharp Locality of GNNs through Loss
Landscape

Intuitively, due to the message-passing mechanism in GNNs, edit-

ing the model behavior for a single node can cause the editing effect

to propagate across the entire graph. This propagation pushes the

node representation far from its original one. Thus, we hypoth-
esized that the difficulty in editing GNNs as being due to
the neighbor propagation of GNNs. The model editing aims

to correct the prediction of the misclassified node using the cross-

entropy loss of desired label. Intuitively, the large accuracy drop

can be interpreted as the low model prediction similarity before

and after model editing, named as the locality.

To quantitatively measure the locality, we use the metric of KL

divergence between the node representations learned before and

after model editing. The higher KL divergence means after editing,

the node representation is far away from the original one. In other

words, the higher KL divergence implies poor model locality, which

is undesirable in the context of model editing. Particularly, we

visualize the locality loss landscape for Cora dataset in Figure 1.

We observe several insights: (1) GNNs (e.g., GCN and GraphSAGE)

suffer from a much sharper loss landscape. Even slightly editing the

weights, KL divergence loss is dramatically enhanced. That means

GNNs are hard to be fine-tuned while keeping the locality. (2) MLP

shows a flatter loss landscape and demonstrates much better locality

to preserve overall node representations. This is consistent to the

accuracy analysis in Table 1, where the accuracy drop of MLP is

smaller.

3.3 EGNN Neighbor Propagation Free GNN
Editing

In our previous analysis, we hypothesized that the difficulty in

editing GNNs as being due to the neighbor propagation. However,

as Table 1 suggested, the neighbor propagation is necessary for

obtaining good performance on graph datasets. On the other hand,

MLP could stabilize most of the node representations during model

editing although it has worse node classification capability. Thus,

we need to find a way to “disable” the propagation during editing

while still utilizing the neighbor propagation scheme for node pre-

diction to obtain satisfactory results. Following the motivation, we

propose to combine a compact MLP to the well-trained GNN and

only modify the MLP during editing. In this way, we can correct the

model’s predictions through this additional MLP while freezing the

neighbor propagation. Meanwhile during inference, both the GNN

and MLP are used together for prediction in tandem to harness the

full potential of GNNs for prediction.

Before editing.We first stitch a randomly initialized compact

MLP to the trained GNN. Tomitigate the potential impact of random

initialization on the model’s prediction, we introduce a training

procedure for the stitched MLP, as outlined in Algorithm ?? “MLP

training procedure”: we train the MLP for a few iterations to

ensure that it does not significantly alter the model’s prediction. By
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GCN SAGE MLP GCN-MLP SAGE-MLP

KL Locality

Low

High

Figure 1: The loss landscape of various model architectures on Cora dataset. Similar results can be found in Appendix C

....
....

Fixed GNNs

Gradient
Flow

(I) The training process of GNNs

Trainable
GNN

(II) The editing process of EGNN

Trainable
MLP

Figure 2: The overview of EGNN . We fix the backbone of GNNs
(in blue), while only update the smallMLPs (in orange) during
editing. The wrongly predicted nodes are highlighted with
orange color, and the MLP only require its node feature.

freezing GNN’s weights, we first get the node embedding 𝒉𝑣 at the
last layer of the trained GNN by running a single forward pass. We

then stitch the MLP with the trained GNNs. Mathematically, we

denote theMLP as𝑔
𝚽
where𝚽 is the parameters of MLP. For a given

input sample 𝒙𝑣,𝒚𝑣 , the model output now becomes 𝒉𝑣 + 𝑔𝚽 (𝒙𝑣).
We calculate two loss based on the prediction, i.e., the task-specific

loss L
task

and the locality loss L
loc

. Namely,

L
task

= − log𝑝
𝚽
(𝑦𝑣 |𝒉𝑣 + 𝑔𝚽 (𝒙𝑣)),

L
loc

= KL(𝒉𝑣 + 𝑔𝚽 (𝒙𝑣) | |𝒉𝑣),

where 𝒉𝑣 + 𝑔𝚽 (𝒙𝑣) is the model prediction with the additional

MLP and 𝑝
𝚽
(𝑦𝑣 |𝒉𝑣 +𝑔𝚽 (𝒙𝑣)) is the probability of class 𝑦𝑣 given by

the model. L
task

is the cross-entropy between the model prediction

and label. L
loc

is the locality loss, which equals KL divergence

between the original prediction 𝒉𝑣 and the prediction with the

additional MLP 𝒉𝑣 + 𝑔𝚽 (𝒙𝑣). The final loss L is the weighted com-

bination of two parts, i.e., L = L
task

+ 𝛼L
loc

where 𝛼 is the weight

for the locality loss. L is used to guide the MLP to fit the task while

keep the model prediction unchanged.

When editing. EGNN freezes the model parameters of GNN
and only updates the parameters of MLP. Specifically, as out-
lined in Algorithm ?? “EGNN Edit Procedure”, we update the pa-

rameters of MLP until the model prediction for the misclassified

sample is corrected. Since MLP only relies on the node features, we

can easily perform these updates in mini-batches, which enables

us to edit GNNs on large graphs.

Lastly, we visualize the KL locality loss landscape of EGNN

(including GCN-MLP and SAGE-MLP) in Figure 1. It is seen that

the proposed EGNN shows the most flattened loss landscape than

MLP and GNNs, which implied that EGNN can preserve overall

node representations better than other model architectures.

4 RELATEDWORK AND DISCUSSION
Due to the page limit, below we discuss the related work on model

editing. We also discuss the limitation in Appendix B.

Model Editing. Many approaches have been proposed for model

editing. The most straightforward method adopts standard fine-

tuning to update model parameters based on misclassified samples

while preserving model locality via constraining parameters travel

distance in model weight space [22, 23]. Work [24] introduces meta-

learning to find a pre-trained model with rapid and easy finetuned

ability for model editing. Another way to facilitate model editing re-

lies on external learned editors to modify model editing considering

several constraints [16–18, 25]. The editing of the activation map

is proposed to correct misclassified samples in [26, 27] due to the

belief of knowledge attributed to model neurons. While all these

works either update base model parameters or import external sep-

arate modules for model prediction to induce desired prediction

change, the considered data is i.i.d. and may not work well in graph

data due to essential node interaction during neighborhood prop-

agation. In this paper, we propose EGNN, using a stitched MLP

module to edit the output space of the base GNN model, for node

classification tasks. The key insight behind this solution is the sharp

locality of GNNs, i.e., the prediction of GNNs can be easily altered

after model editing.

5 EXPERIMENTS
The experiments are designed to answer the following research

questions. RQ1: Can EGNN correct the wrong model prediction?

Moreover, what is the difference in accuracy before and after editing

using EGNN ? RQ2: Can the edits generalize to correct the model

prediction on other similar inputs? RQ3: What is the time and

memory requirement of EGNN to perform the edits?

5.1 Experimental Setup
Datasets andModels. To evaluate EGNN , we adopt four small-scale

and four large-scale graph benchmarks from different domains. For

small-scale datasets, we adopt Cora, A-computers [28], A-photo

[28], and Coauthor-CS [28]. For large-scale datasets, we adopt Red-

dit [2], Flickr [4], ogbn-arxiv [5], and ogbn-products [5].We integrate

EGNN with two popular models: GCN [21] and GraphSAGE [2]. To
avoid creating confusion, GCN and GraphSAGE are all trained with
the whole graph at each step. We evaluate EGNN under the inductive
setting. Namely, we trained the model on a subgraph containing

only the training node and evaluated it on the whole graph. Details

about the hyperparameters and datasets are in Appendix A.

Compared Methods. We compare our EGNN editor with the fol-

lowing two baselines: the vanilla gradient descent editor (GD) and

Editable Neural Network editor (ENN) [15]. GD is the same editor
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Table 2: The results on four small scale datasets after applying one single edit. The reported number is averaged over 50
independent edits. SR is the edit success rate, Acc is the test accuracy after editing, and DD are the test drawdown, respectively.
“OOM” is the out-of-memory error.

Editor

Cora A-computers A-photo Coauthor-CS

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN

GD 84.37±5.84 5.03±6.40 1.0 44.78±22.41 43.09±22.32 1.0 28.70±21.26 65.08±20.13 1.0 91.07±3.23 3.30±2.22 1.0

ENN 37.16±3.80 52.24±4.76 1.0 15.51±10.99 72.36±10.87 1.0 16.71±14.81 77.07±15.20 1.0 4.94±3.78 89.43±3.34 1.0

EGNN 87.80±2.34 1.80±2.13 1.0 82.85±5.20 2.32±5.11 0.98 91.97±5.85 2.39±5.34 1.0 94.54±0.07 -0.17±0.07 1.0

Graph-

SAGE

GD 82.06±4.33 4.54±5.32 1.0 21.68±20.98 61.15±20.33 1.0 38.98±30.24 55.32±29.35 1.0 90.15±5.58 5.01±5.32 1.0

ENN 33.16±1.45 53.44±2.23 1.0 16.89±16.98 65.94±16.75 1.0 15.06±11.92 79.24±11.25 1.0 13.71±2.73 81.45±2.11 1.0

EGNN 85.65±2.23 0.55±1.26 1.0 84.34±4.84 2.72±5.03 0.94 92.53±2.90 1.83±3.22 1.0 95.27±0.08 -0.01±0.10 1.0
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Figure 3: Sequential edit drawdown of GCN on four small scale datasets.
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Figure 4: Sequential edit drawdown of GraphSAGE on four small scale datasets.
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Figure 5: Sequential edit test drawdown of GCN and GraphSAGE on Reddit and ogbn-arxiv dataset.

we used in our preliminary analysis in Section 3.We note that for
othermodel editing, e.g., MEND [16], SERAC [17] are tailored
for NLP applications, which cannot be directly applied to the
graph area. Specifically, GD applies the gradient descent on the
parameters of GNN until the GNN makes right prediction. ENN

trains the parameters of GNN for a few steps to make it prepare

for the following edits. Then similar to GD editor, it applies the

gradient descent on the parameters of GNN until the GNNmakes

right prediction. For EGNN , we only train the stitched MLP for

a few steps. Then we only update weights of MLP during edits.

Detailed hyperparameters are listed in Appendix A.

Evaluation Metrics. Following previous work [15–17], we eval-

uate the effectiveness of different methods by the following three

metrics. DrawDown (DD), which is the mean absolute difference

of test accuracy before and after performing an edit. A smaller

drawdown indicates a better editor locality. Success Rate (SR),
which is defined as the rate of edits, where the editor successfully

corrects the model prediction. Edit Time, which is defined as the

wall-clock time of a single edit that corrects the model prediction.

5.2 The Effectiveness of EGNNn Editing GNNs
In many real-world applications, it is common to encounter situa-

tions where our trained model produces incorrect predictions on

unseen data. It is crucial to address these errors as soon as they are

identified. To assess the usage of editors in real-world applications

(RQ1), we select misclassified nodes from the validation set,
which is not seen during the training process. Then we employ

the editor to correct the model’s predictions for those misclassified

nodes, and measure the drawdown and edit success rate on the test

set.

The results after editing on a single node are shown in Table 2

and Table 3. We observe that

❶ Unlike editing Transformers on text data [16, 17, 29], all editors
can successfully correct the model prediction in graph domain. As
shown in Table 3, all editors have 100% success rate when edit GNNs.

In contrast, for transformers, the edit success rate is often less than

50% and drawdown is much smaller than GNNs [16, 17, 29]. This

observation suggests that unlike transformers, GNNs can be
easily perturbed to produce correct predictions. However, at
the cost of huge drawdown on other unrelated nodes. Thus,
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Table 3: The results on four large scale datasets after applying one single edit. “OOM” is the out-of-memory error.

Editor

Flickr Reddit

ogbn-

arxiv

ogbn-

products

Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑ Acc↑ DD↓ SR↑

GCN

GD 13.95±11.0 37.25±10.2 1.0 75.20±12.3 20.32±11.3 1.0 23.71±16.9 46.50±14.9 1.0 OOM OOM 0

ENN 25.82±14.9 25.38±16.9 1.0 11.16±5.1 84.36±3.1 1.0 16.59±7.7 53.62±6.7 1.0 OOM OOM 0

EGNN 44.91±12.2 6.34±10.3 1.0 94.46±0.4 1.03±0.6 1.0 67.34±8.7 2.67±4.4 1.0 74.19±3.4 0.81±0.23 1.0

Graph-

SAGE

GD 17.16±12.2 31.88±12.2 1.0 55.85±22.5 40.71±20.3 1.0 19.07±14.1 36.68±10.1 1.0 OOM OOM 0

ENN 28.73±5.6 20.31±5.6 1.0 5.88±3.9 90.68±4.3 1.0 8.14±8.6 47.61±7.6 1.0 OOM OOM 0

EGNN 43.52±10.8 5.12±10.8 1.0 96.50±0.1 0.05±0.1 1.0 67.91±2.9 0.64±2.3 1.0 76.27±0.6 0.17±0.10 1.0
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Figure 6: The subgroup and overall test accuracy before and after one single edit. The results are averaged over 50 independent
edits.

the main challenge lies in maintaining the locality between
predictions for unrelated nodes before and after editing. This
observation aligns with our initial analysis, which highlighted the

interconnected nature of nodes and the edit on a single node may

propagate throughout the entire graph.

❷ EGNN significantly outperforms both GD and ENN in terms of
the test drawdown. This is mainly because both GD and ENN try

to correct the model’s predictions by updating the parameters of

Graph Neural Networks (GNNs). This process inevitably relies on

neighbor propagation. In contrast, EGNN has much better test accu-

racy after editing. Notably, for Reddit, the accuracy drop decreases

from roughly 80% to ≈ 1%, which is significantly better than the

baseline. This is because EGNN decouples the neighbor propagation

with the editing process. Interestingly, ENN is significantly worse

than the vanilla editor, i.e., GD, when applied to GNNs. As shown

in Appendix C, we found that this discrepancy arises from the ENN

training procedure, which significantly compromises the model’s

performance to prepare it for editing.

In Figure 3, 4, and 5 we present the ablation study under the

sequential setting. This is a more challenging scenario where the

model is edited sequentially as errors arise. In particular, we plot

the test accuracy drawdown against the number of sequential edits

for GraphSAGE on the ogbn-arxiv dataset. We observe that ❸ EGNN
consistently surpasses both GD and ENN in the sequential setting.
However, the drawdown is considerably greater than that in the

single edit setting. For instance, EGNN exhibits a 0.64% drawdown

for GraphSAGE on the ogbn-arxiv dataset in the single edit setting,

which escalates up to a 20% drawdown in the sequential edit setting.

These results also highlight the hardness of maintaining the locality

of GNN prediction after editing.
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Figure 7: T-SNE visualizations of GNN embeddings before
and after edits on the Cora dataset. The flipped nodes are all
from class 0, which is marked in red color.

5.3 The Generalization of the Edits of EGNN
Ideally, we aim for the edit applied to a specific node to generalize

to similar nodes while preserving the model’s initial behavior for

unrelated nodes. To evaluate the generalization of the EGNN edits,
we conduct the following experiment:

(1)We first select a particular group (i.e., class) of nodes based

on their labels. (2) Next, we randomly flip the labels of 10% of the

training nodes within this group and train a GNN on the modified

training set. (3) For each flipped training node, we correct the

trained model’s prediction for that node back to its original class

and assess whether the model’s predictions for other nodes in

the same group are also corrected. If the model’s predictions for

other nodes in the same class are also corrected after modifying a

single flipped node, it indicates that the EGNN edits can effectively

generalize to address similar erroneous behavior in the model.
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Table 4: The edit time and memory required for editing.

Editor

Flickr Reddit

ogbn-

arxiv

ogbn-

products

Edit

Time (ms)

Peak

Memory (MB)

Edit

Time (ms)

Peak

Memory (MB)

Edit

Time (ms)

Peak

Memory (MB)

Edit

Time (ms)

Peak

Memory (MB)

GCN

GD 379.86 707 1835.24 3429 663.17 967 OOM OOM

EGNN 246.63 315 765.15 2089 299.71 248 5122.53 5747

Graph-

SAGE

GD 712.07 986 4781.92 5057 668.77 1109 OOM OOM

EGNN 389.37 328 1516.68 2252 174.82 260 5889.59 6223

To answer RQ2, we conduct the above experiments and report

the subgroup and overall test accuracy after performing a single

edit on the flipped training node. The results are shown in Figure

6. We observe that: ❹ From Figure 6a and Figure 6c, EGNN signifi-
cantly improves the subgroup accuracy after performing even a single
edit. Notably, the subgroup accuracy is significantly lower than

the overall accuracy. For example, on Flickr dataset, both GCN

and GraphSAGE have a subgroup accuracy of less than 5% before

editing. This is mainly because the GNN is trained on the graph

where 10% labels of the training node in the subgroup are flipped.

However, even after editing on a single node, the subgroup accuracy

is significantly boosted. These results indicate that the EGNN edits
can effectively generalize to address the wrong prediction on other

nodes in the same group. In Figure 7, we also visualize the node

embeddings before and after editing by EGNN on the Cora dataset.

We note that all of the flipped nodes are from class 0, which is

marked in red color in Figure 7. Before editing, the red cluster has

many outliers that lie in the embedding space of other classes. This

is mainly because the labels of some of the nodes in this class are

flipped. In contrast, after editing, the nodes in the red cluster be-

come significantly closer to each other, with a substantial reduction

in the number of outliers.

5.4 The Efficiency of EGNN
We want to patch the model as soon as possible to correct errors

as they appear. Thus ideally, the editor should be efficient and

scalable to large graphs. Here we summarize the edit time and

memory required for performing the edits in Table 4. We observe

that EGNN is about 2 ∼ 5× faster than the GD editor in terms of

the wall-clock edit time. This is because EGNN only updates the

parameters of MLP, and totally gets rid of the expensive graph-

based sparse operations [19, 20, 30]. Also, updating the parameters

of GNNs requires storing the node embeddings in memory, which

is directly proportional to the number of nodes in the graph and can

be exceedingly expensive for large graphs. However, with EGNN , we
only use node features for updating MLPs, meaning that memory

consumption is not dependent on the graph size. Consequently,

EGNN can efficiently scale up to handle graphs with millions of

nodes, e.g., ogbn-products, whereas the vanilla editor raises an

OOM error.

6 CONCLUSION
In this paper, we explore a and important problem, i.g., GNNs model

editing for node classification. We first empirically observe that

the vanilla model editing method may not perform well due to

node aggregation, and then theoretically investigate the underlying

reason through the lens of locality loss landscape with quantitative

analysis. Furthermore, we propose EGNN to correct misclassified

samples while preserving other intact nodes, via stitching a train-

able MLP. In this way, the power of GNNs for prediction and the

editing-friendly MLP can be integrated together in EGNN.
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A EXPERIMENTAL SETTING
A.1 Datasets for node classification
The statistical information of datasets are shown in Table 5.

Table 5: Statistics for datasets used for node classification.

Dataset # Nodes. # Edges # Classes # Feat Density

Cora 2,485 5,069 7 1433 0.72‰

A-computers 13,381 245,778 10 767 2.6‰

A-photo 7,487 119, 8 745 4.07‰

Coauthor-CS 18,333 81,894 15 6805 0.49‰

Flickr 89,250 899,756 7 500 0.11‰

Reddit 232,965 23,213,838 41 602 0.43‰

ogbn-arxiv 169,343 1,166,243 40 128 0.04‰

ogbn-products 2,449,029 61,859,140 47 218 0.01‰

B LIMITATIONS AND FUTUREWORK
Despite that EGNN is effective, generalized, and efficient, its main

limitation is that currently it will incur the larger inference latency,

due to the extra MLP module. However, we note that this inference

overhead is negligible. This is mainly because the computation of

MLP only involves dense matrix operation, which is way more

faster than the graph-based sparse operation. The future work

comprises several research directions, including (1) Enhancing the

efficiency of editable graph neural networks training through vari-

ous perspectives (e.g., model initialization, data, and gradient); (2)

understanding why vanilla editable graph neural networks training

fails from other perspectives (e.g., interpretation and information

bottleneck) [31–33]; (3) Advancing the scalability, speed, and mem-

ory efficiency of editable graph neural networks training [19, 20, 30];

(4) Expanding the scope of editable training for other tasks (e.g.,

link prediction, and knowledge graph) [34, 35]; (5) Investigating

the potential issue concerning privacy, robustness, and fairness in

the context of editable graph neural networks training [36–42].

C MORE EXPERIMENTAL RESULTS
C.1 More Loss Landscape Results
We visualize the locality loss landscape for Flickr dataset in Figure 8.

Similarly, 𝑍 axis denotes the KL divergence, X-Y axis is centered

on the original model weights before editing and quantifies the

weight perturbation scale after model editing. We observe similar

observations: (1) GNNs architectures (e.g., GCN and GraphSAGE)

suffer from a much sharper loss landscape at the convergence of

original model weights. KL divergence locality loss is dramatically

enhanced even for slight weights editing. (2) MLP shows a flatter

loss landscape and demonstrates mild locality to preserve overall

node representations, which is consistent with the accuracy anal-

ysis in Table 1. (3) The proposed EGNN shows the most flattened

loss landscape than MLP and GNNs, which implied that EGNN

can preserve overall node representations better than other model

architectures.

GCN SAGE MLP GCN-MLP SAGE-MLP

KL Locality

Low

High

Figure 8: The loss landscape of various GNNs architectures
on Flickr dataset.
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