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ABSTRACT
Substitute recommendation in e-commerce has attracted increasing
attention in recent years, to help improve customer experience. In
this work, we propose a multi-task graph learning framework that
jointly learns from supervised and unsupervised objectives with
heterogeneous graphs. Particularly, we propose a new contrastive
method that extracts global information from both positive and
negative neighbors. By feeding substitute signal data from different
sources to learning tasks with different focuses, our model learns
the representation of products that can be applied for substitute
identification under different substitutable criteria. We conduct ex-
periments on Amazon datasets, and the experiment results demon-
strate that our method outperforms all existing baselines in terms
of comprehensive performance among all metrics of interest.
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1 INTRODUCTION
As an emerging field in recommendation system, substitute rec-
ommendation has attracted growing attention in recent years [2,
11, 15, 18, 19, 23, 27, 28], with applications such as recommending
subsitutes when a product is out-of-stock. Typically, substitutable
products are similar and compatible, and equally attractive to target
customers [15, 19]. Most of the existing methods learn the substi-
tutable relation by optimizing a single loss according to multiple
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sources of information; Some works try to learn it by the product
static features combined with customer feedback, such as speci-
fications, prices, title, images and brands combined with product
ratings and reviews [2, 15], and others learn it by customer behavior
data, such as search and click logs, impression and purchase logs,
etc [11, 28]. However, in practice, a single loss may not properly
measure the substitutability in all aspects; rather, multiple substi-
tute criteria are often desired to be optimized. Hence, the lack of a
fundamental understanding on how to jointly learn from different
substitute signals motivates us to fill this gap in this paper.

Intuitively, it is highly desirable to learn a better product repre-
sentation from multiple substitute signals, so that we can measure
the substitutable level of a pair of products by simply measuring the
distance of their representations. Graph neural networks (GNN) is a
popular tool for representation learning, which has been commonly
used to learn node representations [7, 9, 15, 20, 29]. By aggregating
information from neighbors along edges iteratively, one can learn
integrated/global patterns traversed through the graph structure.
Thus, GNN is widely used for substitute identification [11, 28], and
graph clustering [3, 20, 24] to learn local as well as global patterns.

In this work, we propose a multi-task objective that consists of
both supervised and unsupervised graph learning with loss func-
tions that are independently defined for each type of different data
sources. Our contributions are summarized as follows:

• We propose a multi-task graph learning model, named Het-
erogeneous Graph Infomax (HGI), that learns product repre-
sentations from different sources, either supervised or un-
supervised, where each learning task has its own objective
and purpose. All the learning tasks are jointly optimized
by combining their model parameters, and by tuning the
task weight parameter, the output product representations
can be applied for substitute identification under different
substitutable criteria. Experimental results validate the effec-
tiveness of HGI where each task can be improved without
degrading performance for others.

• We propose a new objective function for unsupervised graph
learning that is based on neighborhood information and
learns from both positive and negative signals extracted
from the graph structure. The objective is to optimize a
contrastive loss between positive and negative neighborhood
representations summarized from the graph structure.

Section 2 discusses related work. Section 3 introduces proposed
learning framework. Section 4 gives experimental results. Section
5 concludes this paper.
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2 RELATEDWORK
Substitute recommendation. The concept of substitute has been
proposed decades ago [1, 19], and such substitute relation was
recently integrated in recommendation systems [11, 15, 28]. In par-
ticular, [15] developed the first method that models and predicts
substitutable products by combining product reviews and product
features via topic modeling. Meanwhile, deep learning models are
proposed to model the substitutable relationship between products
[18, 23, 25–27, 30]. Inspired by [7], [28] proposed a heterogeneous
graph neural network, which learns substitute information from
knowledge graph that is constructed by customer behavior data
such as co-views and co-purchases. Typically, customer behavior
data is viewed as product relationship, and is leveraged to connect
product nodes in the graph. Although such behavior connections
are easily obtained, there are limitations such as incomplete/noisy
links due to low counting and cold start problems as it takes time
for new products to receive customer behaviors. To address the
issue, [11] proposed a multi-task objective that learns from multi-
ple customer behaviors such as product search, etc. Although the
objective in [11] consists of loss functions designed for each data,
all learning tasks are learning from customer behavior data, which
still can be incomplete/noisy. In our work, we propose a novel un-
supervised learning task that learns from graph structure, which
helps to mitigate the issue by learning global structures.

For a more general recommendation to recommend products
to users (i.e., not product relationship such as substitutes), the
Graph Convolution Networks have been applied [10, 12]. Notably,
[10] applies clustering to avoid negative impact from higher or-
der neighbors, which is similar to our work in terms of learning
global structure. However, our work aims at achieving it via con-
trastive learning in a soft manner, avoiding expensive clustering
computation as well as parameter tuning of clustering.

Contrastive learning. Contrastive learning is a popular ap-
proach in unsupervised learning, where a model is trained based
on contrastive representations. Many existing works leverage con-
trastive learning to learn representations of nodes in a graph [6, 8,
17, 21]. However, when obtaining negative samples for contrastive
purposes in objective, most of the existing works choose to ran-
domly sample some negative nodes from the graph or utilize some
random transformations, which “creates” the negative samples. In
our work, as we have both positive and negative edges, we can
leverage the negative edges to generate negative examples, which
necessitates new contrastive objective based on graph information.
In this work, we leverage graph level representation in contrastive
learning to learn global structure of the product relationship.

3 HETEROGENEOUS GRAPH INFOMAX
METHODOLOGY

3.1 Problem Formulation
We denote the product graph by 𝐺 = (𝑁, 𝐸), where the node set of
the graph 𝑁 represents the set of products, with the initial product
embeddings {𝒙𝑖 }𝑖∈[𝑁 ] being nodes, and the set of edges 𝐸. The
graph 𝐺 is heterogeneous with 𝐾 edge types corresponding to dif-
ferent product connections, e.g., co-views and co-purchases. We
consider an encoder E(𝑋,𝑊 ) : {𝒙𝑖 }𝑖∈[𝑁 ] → {𝒛𝑖 }𝑖∈[𝑁 ] that is a
graph neural network, where𝑊 ∈ R𝑀×𝐿 is the set of parameters

in the encoder, where𝑀 is the dimension of the node representa-
tion, and 𝐿 is the number of layers of the encoder. The encoder E
transforms the input node representations to a set of new represen-
tations that can be used for downstream tasks. Our goal is to train
a set of parameters𝑊 for the encoder E by using multiple learning
tasks with different objective functions that learn from different
data sources. The parameters𝑊 will then be used to generate prod-
uct embeddings for substitute candidate generation. Given a query
product, its substitute candidates can be generated by ranking the
products via their output representations and setting a threshold 𝑘
for its 𝑘 nearest neighbor (𝑘NN) products.

3.2 HGI Modeling
We propose a multi-task learning model that jointly learns through
supervised or unsupervised approaches; the supervised tasks learn
from labels collected from different sources of substitutable and
non-substitutable signals, and the unsupervised objective learns
implicit product relations by extracting information from the graph
structure. Our model contains three representative learning tasks,
learning from i) customer behavior data, ii) graph structure, and
iii) product static information, respectively.

3.2.1 Behavior Learning Task. Customer behavior data is collected
from different data streams, including both substitute and non-
substitute signals. For example, co-views, which is treated as sub-
stitute signals, are the product pairs that are viewed together by
customers. Likewise, search pairs, also treated as substitute signals,
are the product pairs that are usually clicked together in the same
search query. In contrast, co-purchases, the product pairs that are
purchased together, should be treated as non-substitute signal since
customers rarely buy substitutable products together. For labels,
we denote a product pair (𝑁𝑖 , 𝑁 𝑗 ) as a substitute label, where 𝑁𝑖 is
a query product and 𝑁 𝑗 is labeled as substitutable to 𝑁𝑖 .

This learning task learns from 𝑆 sources of behavior data, with
the loss function being defined as a combination of losses from all
data sources. As in [11], we consider two types of loss functions:
i) Triplet loss, which captures the pairwise correlation, is used for
sparse data sources, i.e., a small average number of substitutable
labeled products for each query product, and for each label pair
(𝑁𝑖 , 𝑁 𝑗 ), its triplet loss is defined as follows:

𝐿𝑇 (𝒛𝑖 , 𝒛 𝑗 ) = E𝑘∼𝑁 max{0, 𝒛𝑖 · 𝒛 𝑗 − 𝒛𝑖 · 𝒛𝑘 + Δ}, (1)

where 𝒛𝑖 , 𝒛 𝑗 , 𝒛𝑘 are the output representations of product 𝑁𝑖 , 𝑁 𝑗 ,
𝑁𝑘 from the encoder E, respectively, and Δ denotes the margin
hyper-parameter; ii) Listwise loss is used for denser data sources,
i.e., a large average number of substitutable labeled products for
each query product. For each query product 𝑁𝑖 , there exists a
substitute/non-substitute label list {𝑁𝑖1, . . . , 𝑁𝑖𝑀 } of length𝑀 , asso-
ciatedwith an indicator list {𝑌𝑖1, . . . , 𝑌𝑖𝑀 } indicating substitute/non-
substitute, where the product pairs are sorted in decreasing order
in cosine similarity. Then the listwise loss for query product 𝑁𝑖 is
defined as follows:

𝐿𝐿𝑊 (𝒛𝑖 , {𝒛𝑖 ·}, {𝑌𝑖 ·}) =
𝑀∑︁

𝑚=1
𝑣𝑚 · 𝑞𝐴𝑃 (𝒛𝑖𝑚, 𝑌𝑖𝑚),

where 𝑣𝑚 is a normalized attention weight for the position𝑚 in
the label list, and 𝑞𝐴𝑃 (·) is a quantized average precision loss that
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is maximized directly using stochastic optimization. The definition
of 𝑞𝐴𝑃 loss can be found in Eq. (3) in [11]. The loss function for the
behavior learning task is given by 𝐿𝐵 =

∑
𝑠∈𝑆 _𝑠 · 𝐿𝑠 , where _𝑠 is

the weight for data source 𝑠 , and 𝐿𝑠 is the loss function for the data
source 𝑠 , which could be either a triplet or a listwise loss.

3.2.2 Contrastive Learning Task. In this learning task, we learn
from graph structure to update product representations, i.e., learn-
ing the product representation from its neighborhood in an un-
supervised manner. Inspired by [21], our approach is to define a
contrastive objective function, where we minimize the distance
between the query node representation and its positive neighbors,
and maximize the distance between the query node representa-
tion and its negative neighbors. Given the heterogeneous product
graph𝐺 , we filter the 𝐾 edge types and obtain a set of positive edge
types denoted by 𝐾+, implying positive product relation regarding
substitutability (e.g., co-views). For a query node 𝑁𝑖 , to obtain its
positive neighborhood representation, we randomly sample 𝑃 levels
of neighbors along positive edge types, where each level is denoted
by a set 𝑁 +

𝑖,𝑝
with 𝑝 ∈ 𝑃 . Then we generate the positive neighbor-

hood representation �̃�+
𝑖
via a readout function 𝑅 : {𝒛𝑖,𝑝 }𝑝∈𝑃 → �̃�𝑖 .

The distance of a positive relation can be the distance of the query
node representation 𝒛𝑖 and its neighborhood representation �̃�+

𝑖
. For

negative relations, we use one of two methods below;
1. Nodes relocation. This method was proposed in [21], where

one relocates all the input node representations before the encoder
transformation, i.e., shuffling node representation, to generate a
negative graph example𝐺− . Then, given a query node𝑁𝑖 , we obtain
its negative query node representation 𝒛−

𝑖
through the same encoder

E(𝐺−,𝑊 ). Then, with �̃�+
𝑖
and 𝒛−

𝑖
, our loss function is defined as

follows:

𝐿𝐶 (𝒛𝑖 , �̃�+𝑖 , 𝒛
−
𝑖 ) = E

{
log𝜎

(
𝑑 (𝒛𝑖 , �̃�+𝑖 )

)
+ log

[
1 − 𝜎

(
𝑑 (𝒛−𝑖 , �̃�

+
𝑖 )
) ]}

, (2)

where 𝑑 (𝒂, 𝒃) denotes the Euclidean distance of vectors 𝒂 and 𝒃 .
2. Negative neighbor sampling. For heterogeneous graphs

with edge types that represents negative node relations, e.g., co-
purchases, we propose a new method to obtain the negative rep-
resentation distance. Similarly to Nodes relocation, given a query
node 𝑁𝑖 , we randomly sample 𝑃 levels of neighbors along negative
edge types, where each level is denoted by set 𝑁 −

𝑖,𝑝
with 𝑝 ∈ 𝑃 .

Then we generate the negative neighborhood representation �̃�−
𝑖

via the readout function 𝑅. Next, we generate the negative distance
by measuring the distance of the query node representation 𝒛𝑖 and
its neighborhood representation �̃�−

𝑖
. Formally, we define our loss

function as follows:

𝐿𝐶 (𝒛𝑖 , �̃�+𝑖 , �̃�
−
𝑖 ) = E

{
log𝜎

(
𝑑 (𝒛𝑖 , �̃�+𝑖 )

)
+ log

[
1 − 𝜎

(
𝑑 (𝒛𝑖 , �̃�−𝑖 )

) ]}
. (3)

3.2.3 Static Information Learning Task. This learning task learns
from labels based on static product features, e.g., product images
and product titles. Since behavior learning task optimizes product
representations regardless of static product features, it is possible
that the predicted substitutable products have different appearances
or titles, which in some cases conflicts with substitutable criteria
in common sense. To this end, we add static information similarity
as a separate task, so that we can avoid the situation where the
optimization is dominated by learning behavior data, and we can

Table 1: Approximate training time for each learning task,
with 30 epochs and batch size 64.

Learning Task Training Time

Behavior Learning Task 5 hr
Contrastive Learning Task (Nodes Relocation) 37 hr
Contrastive Learning Task (Negative Neighbors Sampling) 46 hr
Static Info Learning Task 32 min

Table 2: Comparison of two contrastivemethods on two learn-
ing tasks with different task weights, where HGI-relo is the
setting of behavior task and contrastive task with nodes re-
location, and HGI-neighbor is the setting of behavior task
and contrastive task with negative neighbors sampling.

Weight Browse Node Behavior

Ratio MAP@100/500/1K NDCG@5/30/500 MAP@5/30/500

Embedding .8746 .7953 .7566 .0541 .0852 .1438 .0343 .0452 .0507

HGI-relo 10:1 .9622 .9231 .9011 .0932 .1656 .2726 .0614 .0874 .1001
HGI-relo 1:1 .9752 .947 0 .9299 .0847 .1528 .2614 .0555 .0790 .0915
HGI-neighbor 10:1 .9624 .9247 .9026 .0844 .1468 .2547 .0552 .0774 .0894
HGI-neighbor 1:1 .9778 .9523 .9369 .0801 .1465 .2541 .0521 .0748 .0870

jointly learn content similarities. In this learning task, we generate
labels from one data source, which contains labeled product pairs
sharing similar product attributes, e.g., product images and titles.
We utilize the triplet loss in Eq. (1) as our loss function in this
learning task.

To integrate all the learning task objectives in training process,
we aggregate the computed gradients from three learning tasks by a
weighted sum to specify trade-off’s between the tasks, which allows
us to generate product representations that reflect our preference
over the trade-off’s: 𝐿𝐵 + _𝐶𝐿𝐶 . For example, if we want to have
more strict optimization in learning global patterns than behavior
learning, we can put higher weights on the contrastive loss.

4 EXPERIMENTS
4.1 Experimental design
We collect customer behavior data and static product feature from
Amazon proprietry data. The behavior data consists of three data
sources: CSS, Search logs, Out-Of-Stock logs, where CSS includes
co-views, co-purchases, and view-to-purchases, in the format of
product pairs. For product static data, we extract images and titles,
which are generated by pre-trained Xception (2048 dimension) [4],
and by pre-trained BERT (768 dimension) [5], respectively. Both
are reduced to 100 dimensions by PCA and concatenated to be an
input representation.

We construct the heterogeneous graph with nodes by product
representations and edges by behavior data. For fair comparison
with [11], we construct the graph with six edge types, including
co-views, co-purchases, view-to-purchases, purchase-from-views,
search, and OOS. All edge types are bi-directed except view-to-
purchases and purchase-from-views. The graph contains ∼1M prod-
uct nodes with their embeddings. Graph details can be found in
Table 1 in [11]. We use the heterogeneous graph neural network in
[28] as our encoder, which is implemented with the DGL library
[22]. Unless stated otherwise, we set batch size to be 64 and learning
rate to be 0.0001 for all methods. For a fair comparison, we use the
same graph structure and initialization for all methods.
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Table 3: Comparison of HGI and its baselines, where all the baselines are the one learning task version of our model that
focuses on single objective optimization.

Browse Node Behavior Static Info

MAP@100/500/1000 NDCG@5/30/500 MAP@5/30/500 NDCG@5/30/500 MAP@5/30/500

Embedding .8746 .7953 .7566 .0541 .0852 .1438 .0343 .0452 .0507 .1274 .1812 .2459 .0912 .1112 .1180

M-HetSAGE .9574 .9151 .8909 .0875 .1543 .2611 .0573 .0812 .0934 .1164 .1730 .2478 .0831 .1032 .1110
DGI .9812 .9574 .9415 .0544 .0944 .1643 .0346 .0484 .0561 .0975 .1534 .2312 .0688 .0879 .0963
HGI-contrastive .9524 .8911 .8547 .0368 .0641 .1176 .0231 .0319 .0371 .0588 .0977 .1650 .0401 .0524 .0589
Static Info .9242 .8687 .8399 .0603 .0976 .1663 .0386 .0518 .0587 .1282 .1912 .2723 .0919 .1148 .1238

HGI-relo .9825 .9598 .9454 .0873 .1571 .2626 .0576 .0817 .0938 .1237 .1906 .2711 .0883 .1124 .1217
HGI-neighbor .9859 .9663 .9528 .0808 .1452 .2475 .0530 .0751 .0866 .1094 .1764 .2588 .0768 .1002 .1096

For the behavior learning task, we generate the labels by filtering
the customer behavior data. Specifically, for data source CSS, we
use the overlapped pairs from co-views and view-to-purchases with
co-purchases being removed to be the labeled positive pairs; for
data sources search and OOS, we label product pairs with higher
substitutability scores (i.e., search pairs with click score over 50 and
OOS pairs with purchase rate over 0.2) as positive pairs. During
training process, for each query node, we randomly sample nodes
from the graph as its negative labels to compute loss.

For the static information learning task, we generate labels from
a similarity based dataset that is based on static (i.e., product images
and titles) information whose quality is maintained by human ex-
perts. Similarly to the behavior learning task, we randomly sample
nodes from the graph as negative labels for query nodes to compute
loss. For both behavior and static information learning tasks, we
split the label set with 80% for training and 20% for testing.

For contrastive learning task, we set co-purchases edges as neg-
ative edges, and all the other edge types as positive edges. For both
positive and negative neighbors sampling, we sample three layers
of neighbors, each layer with 10 random nodes from positive and
negative edge types, respectively. In order to mitigate the conflict
of different objective functions, we sample positive neighbors of
query nodes along positive edges filtered by positive training labels.
We use a simple mean function as readout function, and Euclidean
distance for contrastive loss.

The evaluation process is as follows: after we collect all output
product representations, we run 𝑘NN of a set of query products.
Then, we evaluate their Normalized Discounted Cumulative Gain
(NDCG) and Mean Average Precision (MAP) with different 𝑘 on
testing labels from behavior, and static info. To evaluate the effect
of contrastive loss, we use the browse node, which is the smallest
product category in Amazon as a proxy to capture global similarity;
Products sharing the same browse node indicate that the products
have the same type – hence, it can be considered as a superset of
substitutes. The approximate training times for learning tasks are
summarized in Table 1.

4.2 Results and Discussions
4.2.1 Comparison of Two Contrastive Methods. We first compare
HGIwith two learning tasks: behavior and contrastive, and test each
of them under two different task weights. HGI-relo, HGI-neighbor
are two-task versions of HGI with nodes relocation and negative
neighbor sampling, respectively. The results are listed in Table 2,
where the row of embedding is the evaluation result on raw input
node embeddings.We observe that both contrastive methods clearly

outperform the baseline setting on raw embeddings. Comparison
between HGI-relo and HGI-neighbor shows trade-off; while HGI-
neighbor performs better on browse node, HGI-relo works better
on behavior data, and vice versa. As expected, task weights can
control balance of the tasks; when putting more weight on behavior
learning task, the performance on behavior data will get better on
both HGI settings, and correspondingly, the performance on browse
node will shrink a bit on both HGI setting, and vice versa.

4.2.2 Comparison of HGI and Baselines. In this experiment, we
compare HGI with some baseline settings. For HGI, we set all the
task weights as 1 : 1 : 1. M-HetSAGE is a one-task learning method
focusing on behavior learning [11], DGI is a one task learning
method focusing on contrastive learning, which is a customized
method of DGI framework in [21], and sharing an identical model
structure with the one-task version of our model HGI-relo, HGI-
contrastive is a one-task version of our model HGI-neighbor, Static
Info is a one-task learning method focusing on static info learning.
We list our experiment results in Table 3, where we observe that
each baseline setting performs well on its own learning task, e.g.,
M-HetSAGE is better on behavior data, DGI and HGI-contrastive
are better on browse node, and Static Info is better on static info.
When combining all three tasks in HGI, the comprehensive perfor-
mance of HGI-relo over all testing sets outperforms all the baseline
settings, implying that such multi-task framework helps improve
learning performance on each single task. Besides, our setting HGI-
neighbor has the best performance on browse node, implying that
our proposed contrastive method performs better on extracting
graph structure and learning from neighborhood.

5 CONCLUSION
In this work, we proposed a multi-task graph learning model HGI,
which learns product representation from different sources, either
supervised or unsupervised, where each learning task has its own
objective and purpose. In particular, we proposed an objective for
unsupervised graph learning based on neighborhood information
and learns from both positive signals and negative signals extracted
from the graph structure. The experiments on Amazon dataset
empirically demonstrated that ourmethod outperforms all baselines
regarding comprehensive performance among all testing sets. As
for future works, one direction is to have better optimization over
multi-tasks, potentially by dynamically adjusting learning rates of
different tasks during training for a more balanced performance, or
by other more sophisticated methods [13, 14, 16]. Another direction
is to reduce time complexity of contrastive methods, which is a
commonly seen bottleneck for models with graph operations.
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