A Heterogeneous Graph-based Framework for Scalable
Fraud Detection

Phanindra Reddy Madduru®
maddurup@amazon.com
Amazon Inc.

USA

Abstract

The rise of online marketplaces has led to increased con-
cerns regarding the presence of bad actors involved in coun-
terfeit or engage in fraudulent activities. While efforts are
being made by organizations to monitor and address these
issues, bad actors persistently find new ways to engage in
fraudulent behavior, including creating new accounts using
different credentials, account hijacking etc. To combat this
issue, our study proposes the use of Heterogeneous Rela-
tional Graph Convolutional Networks (HRGCN) to identify
risky relationships among entities like sellers or customers.
By leveraging this advanced graph-based approach, we aim
to enhance the detection and mitigation of fraudulent behav-
ior on the e-commerce marketplaces. The HRGCN model is
designed to detect sellers with risky associations with other
known bad sellers by analyzing various connecting edges
such as encrypted device and identity credentials. With the
rapid growth of e-commerce stores, the number of sellers has
witnessed an exponential increase, leading to a significant
expansion in their social networks formed by sharing various
relationships such as digital contact information, communi-
cation channels and devices. This has made it challenging to
process the data with the direct implementation of HRGCN.
This highlights the importance of model scalability in han-
dling large datasets. To address this issue, we have introduced
a novel mini-batch version of HRGCN variant that works in
tandem with a neighborhood sampler, which is optimized
to run on GPUs, significantly reducing the training time by
70%. This mini-batch version of HRGCN maintains and/or
improves the performance of the model while addressing the
scalability issue, making it an efficient solution for handling
large datasets. In this paper, we compare the performance of
three models: a benchmark model based on Random Forest
trained on seller node features alone, HRGCN trained on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MLG’23, Aug 2023, Long Beach, CA, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/XXXXXXX.XXXXXXX

Naveed Janvekar
njjanvek@amazon.com

Amazon Inc.
USA

Full batch, and HRGCN with mini-batch implementation.
The findings of our experiments reveal that the HRGCN
models outperform the benchmark model with a significant
improvement in both F1-score and Recall. Specifically, the
HRGCN models show an impressive increase in recall by ap-
proximately 115% compared to the baseline model. Moreover,
the mini-batch HRGCN model demonstrated substantial im-
provement in performance over the full batch HRGCN model,
achieving a 16% higher F1 score and an 8% higher PR AUC
score. These results emphasize the effectiveness of using a
mini-batch approach to handle large datasets and detecting
related bad sellers.

Keywords: Graph Neural Networks, Heterogeneous Rela-
tional Graph Convolution Networks, Neural Networks, Fraud
Detection, Mini-batch, Fraudulent behavior, Risky relation-
ships, E-commerce marketplaces, Model Scalability, Large
datasets

ACM Reference Format:

Phanindra Reddy Madduru* and Naveed Janvekar. 2023. A Hetero-
geneous Graph-based Framework for Scalable Fraud Detection. In
Proceedings of 19th International Workshop on Mining and Learn-
ing with Graphs (MLG’23). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

With the rapid growth of e-commerce services there are in-
stances of scam, fraud and abuse that not only result in mon-
etary losses for organizations but can also lead to negative
customer experience. To prevent such losses and maintain
customer trust, it is necessary to control fraudulent activities.
Despite several programs, rule-based approaches and tradi-
tional ML models that have been developed to detect and add
friction to bad actors committing fraud, these approaches
are not fast enough to adapt to the rapidly evolving range of
malicious behaviors. Moreover, bad actors, when enforced,
constantly seek out new ways to exploit opportunities to
commit fraud, such as opening new accounts with different
credit cards or fake identity documents, and it is essential
to detect them as early as possible to prevent any negative
downstream customer impact. Therefore, identifying related
bad sellers is crucial to give customers a better shopping
experience.

In response, we aim to detect seller accounts that are re-
lated to known bad sellers. If a new seller shares signals

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MLG’23, Aug 2023, Long Beach, CA, USA

such as email, phone number etc., with other known bad
sellers, they can potentially be the same entity and can be
considered at risk of committing fraud and abuse. However,
in real-world scenarios, bad actors can have multiple vir-
tual phone numbers and emails, making it sub-optimal to
detect them using traditional methods such as tree-based
classifiers [5]. To address this issue, we need more powerful
graph techniques that can effectively and robustly utilize
the relationships between sellers and other transaction or
interaction signals.

A previous version utilizing full-batch HRGCN was suc-
cessfully implemented on a smaller graph, specifically a sub-
set of seller nodes within a designated geo-location. The
smaller graph comprised approximately 3.5 million nodes,
including various entities such as sellers, financial data nodes,
and device nodes, resulting in over 10 million interconnected
edges. However, in this study, we decided to extend our ap-
proach to include all active sellers on a global scale and
consider all interconnected signals/edges to effectively as-
sess risk across the entire graph. As a result, the graph has
expanded significantly, with the number of nodes increasing
by a factor of 5.5x and the number of edges increasing by a
factor of 7x. Thomas and Welling (2017) have highlighted the
limitation of full-batch gradient descent, where memory re-
quirement grows linearly in the size of the dataset. They have
shown that for large graphs that do not fit in GPU memory,
training on CPU can still be a viable option [9]. However,
through the experiments we conducted, we realized that
working with large graphs on CPU is computationally ex-
pensive and time-consuming. Mini-batch stochastic gradient
descent can alleviate this issue [9] which can address the lim-
itations to make the training process more time-efficient and
cost-effective. Therefore, this paper proposes an approach
that utilizes graph techniques and mini-batch HRGCN train-
ing to detect bad entities in a timely and effective manner.

2 Related Work

In recent years, graph neural networks (GNNs) have emerged
as a powerful framework for learning representations of
structured data, such as graphs and networks. Among var-
ious types of GNNs, Relations graph neural networks (Re-
lational GCNs) have shown to be particularly effective in
modeling relationships between entities in a graph. Rela-
tional GCNs capture the structural and semantic information
of a graph by aggregating information from multiple types
of relations between nodes. This approach has been used
for various tasks such as link prediction, recommendation
systems, and fraud detection (Schlichtkrull et al., 2018; Wang
et al,, 2019; Yang et al., 2020).

However, the scalability of GNNs to large-scale graphs
has been a major challenge. Training GNNs on a full-batch
of a large graph can be computationally expensive and re-
quires a significant amount of memory, which limits the size

Phanindra Reddy Madduru, et al.

of graphs that can be processed. To address this limitation,
several mini-batch variants of GNNs have been proposed
(Hamilton et al., 2017 [7]; Chen et al., 2018 [3]). These meth-
ods randomly sample a subset of nodes and edges from the
graph to form mini-batches and perform stochastic gradient
descent (SGD) updates based on the sampled subgraphs.

While mini-batch GNNs have shown promising results
in handling large graphs, they also face several challenges.
One major challenge is the choice of mini-batch size. A small
mini-batch size may lead to high variance in gradient esti-
mation and slow convergence, while a large mini-batch size
may lead to poor generalization and slow training due to
the excessive computation and memory required. Another
challenge is the need to store and update the subgraphs and
their corresponding embeddings efficiently during training,.
In addition, the mini-batch sampling strategy needs to take
into account the connectivity and heterogeneity of the graph
to ensure that the sampled subgraphs are representative
and informative (Chen et al., 2018). To overcome these chal-
lenges, recent works have proposed various techniques for
mini-batch GNNs, such as adaptive mini-batch size schedul-
ing (Chen et al., 2018), efficient subgraph embedding update
(Dai et al., 2018 [4]), and neighbor sampling for scalability
(Hamilton et al., 2017). Moreover, some works have explored
the use of hardware accelerators, such as GPUs and TPUs, to
speed up the training of mini-batch GNNs on large graphs
(Sun et al., 2019).

In summary, the proposed approach builds upon the ex-
isting work in relation graph neural networks and addresses
the challenges of training GNNs on large graphs by using
a subgraph sampling strategy that takes into account the
connectivity and heterogeneity of the graph. Our approach
combines the advantages of mini-batch GNNs and Relational
GCNss to effectively and efficiently detect and block bad ac-
tors in a large-scale graph of sellers and their relationships.

3 Dataset Construction
3.1 Data Sources

Seller Node Features - A seller can have businesses in
multiple geographic locations with varying demographic,
behavioral and transactional characteristics. To represent a
seller as a single entity in our global-level model, we chose to
average all the features to maintain the representation of the
seller as a single node. We selected features using domain ex-
pertise, as well as the significant features from other machine
learning models that aid in identifying fraudulent behavior.
We processed all the above features through a Random forest
model to come up with top 50 features, which are used in our
analysis. To select appropriate feature values, we accessed
the historical seller features data. For a bad actor seller, we
chose the features closest to their account suspension date,
while for a normal seller, we selected features based on the
latest available data. The focus of this study is to classify

A Heterogeneous Graph-based Framework for Scalable Fraud Detection

seller nodes as either high-risk or low-risk based on their
relatedness to other bad Sellers.

Attribute/Edge Data - This dataset comprises a wide
range of historical seller signals that were used to construct
the seller and attribute relationships in our graph model.
For this analysis, we have handpicked a set of signals based
on domain expertise. These signals encompass various at-
tributes that have been encrypted to ensure seller privacy,
such as encrypted device, identity and financial signals. Ex-
tensive measures have been taken to protect the confidential-
ity of seller information throughout the study. To maintain
anonymity and safeguard sensitive data, specific details re-
garding signals used and the time period covered by the
signals have been intentionally withheld.

Seller Labels - In our analysis, we define positive samples
as all the sellers who’s account has been suspended for fraud
and abuse reasons.

3.2 Graph Construction

In order to construct our heterogeneous graph, we utilized
the attribute data which includes the seller signals to estab-
lish the edges between nodes. These edges represent the
relationship between the seller and the attribute signal (see
Appendix 4 for sample graph structure). The node features
for all seller nodes were derived from a seller feature store.
The attribute nodes in the graph were initialized with ran-
dom embeddings, which were refined during the optimiza-
tion step [1]. During our analysis, we observed that there
were some sellers with attribute data from seller relations
data store but no node features available in seller feature
store due to their inactivity, and vice versa. To ensure con-
sistency in our study, we only included sellers with both
attribute signals and node features. However, as a future
work, we plan to expand the model to include all sellers,
even those without node features, by initializing them with
random, mean, or zero embedding vectors.

4 Methods

This section outlines the methods used in this study for
predicting risky sellers in a heterogeneous multi-graph setup.

4.1 Random Forest

Random Forest is a widely used ensemble learning method
for classification tasks. In this study, we used the Random
Forest model as a benchmark to compare the performance
of our proposed method. The Random Forest model was
trained on the seller node features and used to predict the
risky sellers.

4.2 HRGCN architecture

We employed the Heterogeneous Relational Graph Convolu-
tional Network (HRGCN) model proposed by Schlichtkrull
et al. [6] to perform classification on our heterogeneous

MLG’23, Aug 2023, Long Beach, CA, USA

multi-graph dataset. The HRGCN model uses the following
equation for updating node representations:

1
h§I+1) -0 Z Z —‘/Vr(l)hﬁ.l) +V\70(l)h§l) (1)

ci
reR jeNy b

where hfl) is the hidden state of node i in layer [, R is the
set of relation types, N is the set of neighbors of node i
with relation type r, ¢;, is a normalization constant, Wrm
is the weight matrix for relation type r in layer [, VVO(I) is
the weight matrix for the self-loop in layer /, and o is the
activation function (e.g. ReLU).

4.3 Mini Batch HRGCN architecture

In this section, we describe the mini-batch HRGCN algorithm
implementation. We use a modified version of the HRGCN
model proposed in [6] that is designed to handle large-scale
graphs as it avoids the need to load the entire dataset into
memory, which can be time-consuming and computationally
expensive. The proposed model uses a mini-batch approach
to perform training and inference efficiently.

The mini-batch HRGCN algorithm processes the graph
in batches of nodes and edges. Each batch is sampled ran-
domly from the entire graph. The model consists of several
layers of HRGCNSs, each of which learns a different level of
abstraction. The output of the final layer is used to predict
the labels of the nodes in the graph. The algorithm updates
the weights of the model using Adam optimization algorithm
with backpropagation. The loss function used is focus loss,
which is discussed in section 4.5.

The mini-batch HRGCN model consists of several layers
of HRGCNs. Each HRGCN layer takes as input a batch of
nodes and edges and performs the above indicated operation
(1). The input to the first layer is the feature matrix of the
nodes in the batch. The output of the final layer is used to
predict the labels of the nodes in the batch.

For the mini-batch HRGCN algorithm, we start by ran-
domly selecting a batch of seller nodes B, from the entire
graph G in each iteration t. We then gather the neighbor
nodes of B; as the union of the sets of neighbors for all nodes
in B;. Denote the neighbor set of B; as N(B;). We then con-
struct the mini-batch subgraph G, by extracting the nodes
and edges corresponding to B; U N(B;) from the original
graph G. The set of edges in G, is denoted as E;. We then
use this mini-batch subgraph G; to perform the HRGCN
algorithm.

For each layer [in the HRGCN, we first calculate the
hidden representations of the nodes in the mini-batch B,
using the previous layer’s hidden representations as follows:

) _ 1 -1, (1-1) (I-1) p (I-1)
By =0 D) W Uh Y e Wi)
reR jeN, BT

MLG’23, Aug 2023, Long Beach, CA, USA

where hfl) is the hidden representation of node i at layer
I, o is the activation function, R is the set of relation types,
N, is the set of nodes that have relation r with i, ¢;, is a
normalization factor, and Wr(’fj_l) and V\f()fll._l) are the weight
matrices of the model at layer [— 1.

Next, we aggregate the hidden representations of the
nodes in N(B;) by taking the average of the hidden rep-
resentations of their neighbors in B,. Specifically, for each
node j € N(B;), we compute its aggregated hidden repre-
sentation as:

A 1 _
C P ®)
i€B;

Finally, we concatenate the hidden representations of the
nodes in B; and the aggregated hidden representations of
the nodes in N(B;), and use them as the input to the next
layer of the HRGCN:

B = oW - concat(hD, hDY) @

where W) is the weight matrix of the model at layer .

The algorithm terminates when the hidden representa-
tions of all nodes in B; have been computed up to a desired
number of layers.

Overall, the mini-batch HRGCN algorithm allows us to
perform the HRGCN algorithm efficiently on large graphs
by processing the graph in small, randomly selected batches.
This reduces the computational complexity and memory
requirements of the algorithm, while still maintaining its
effectiveness in capturing the complex relationships between
nodes in the graph.

4.4 Neighborhood Sampling

To make our HRGCN model more scalable, along with mini-
batching we also used the HeteroGraphNeighborSampler [2]
method, which is a variant of the GraphSAGE neighbor sam-
pler [7] that is designed for heterogeneous graphs. The Het-
eroGraphNeighborSampler takes as input a graph G = (V, E),
where V is the set of nodes, E is the set of edges. Given a set
of starting nodes S C V, the HeteroGraphNeighborSampler
returns a set of subgraphs that consist of k hops from the
starting nodes, with k being a hyperparameter. Specifically,
it samples the immediate neighbors of the starting nodes in
the first hop, and then iteratively samples the neighbors of
the previously sampled nodes in the subsequent hops, until
k hops are reached. This results in a set of "neighborhoods"
for each node in the batch. We then use these neighborhoods
to construct a subgraph of the original heterogeneous graph.
This subgraph contains only the nodes and edges that are
relevant to the nodes in the batch. We use this subgraph to
perform message passing and update the node embeddings.

By using the HeteroGraphNeighborSampler method, we
are able to perform mini-batch training on our HRGCN

Phanindra Reddy Madduru, et al.

model. This significantly reduces the training time and al-
lows us to train on larger datasets. In addition, the use of
neighborhood sampling allows us to capture the local struc-
ture of the graph. This is important for heterogeneous graphs,
where nodes of different types may have different connec-
tivity patterns. Overall, the HeteroGraphNeighborSampler
method is a powerful sampling technique for performing
mini-batch training on heterogeneous graphs. Its use in our
HRGCN model allows us to achieve better scalability and
performance compared to the full-batch approach.

4.5 Focal Loss Function

We use the Focal Loss function instead of a cross-entropy
loss function to address the class imbalance problem in our
dataset. The key insight of the Focal Loss function is that it
down-weights the contribution of easy examples to the loss,
which in turn allows the model to focus more on hard exam-
ples during training. This is particularly useful in scenarios
where the majority class is much larger than the minority
class, as the model tends to overfit to the majority class other-
wise [8]. In comparison to the binary loss function, the Focal
Loss function can improve the performance of the model
on the minority class without sacrificing performance on
the majority class. The Focal Loss function achieves this by
assigning a higher weight to the minority class during train-
ing, which can help the model learn more from the minority
class examples. This approach can result in a more balanced
model that can handle the minority class with higher accu-
racy, making it more suitable for real-world scenarios where
detecting rare events is critical. Specifically, we observed
that the number of non-risky sellers greatly outnumber the
number of risky related sellers in our dataset. This can lead
to a bias towards the majority class during training, which
can result in poor performance on the minority class [8, 10].

Lrr(pr) = —a: (1 = p;)? log(p:r) (5)

where p; is the predicted probability for the positive class
(probability of being a bad actor), @; is a balancing factor
that weights the contribution of each class based on their
frequency, and y is a tunable parameter that controls the
degree of focus. When y is set to 0, the focal loss reduces to
the standard cross-entropy loss, while larger values of y put
more emphasis on hard examples.

5 Experimental Setup

In this section, we present the experimental setup for our
study on detecting risky sellers using below 3 candidate
methods. We discuss the candidate models, the data splitting
approach, and the modeling hyperparameters. We evaluated
the performance of the models using precision, recall, F1-
score, AUC-PR and AUC-ROC. We then present the results of
the experiments and compare the performance of each model.
Finally, we discuss our observations and draw conclusions
based on the findings.

A Heterogeneous Graph-based Framework for Scalable Fraud Detection

5.1 Candidate methods

To ensure a fair comparison, we used the same training
and test datasets for all the models. To rule out effects of
overfitting, we performed training in 10-fold CV with a left-
alone set of sellers only for test purposes for all the methods.

1) RF. Its a Random Forest classification model with 100
estimators and maximum depth of 10. This model uses the
selected top 50 seller features to predict the riskiness of a
seller.

2) HRGCN Full-Batch (HRGCNFp,jj). Its the HRGCN
implementation with 50 features assigned to each seller node,
using a 5-layer NN with ReLU actiation between the layers
and varying hidden dimensions (50 until [- 2 layers, 16
for I - 1 layer, and 2 for the output layer). The model is
trained for 200 epochs with an early stopping criterion based
on validation loss. We use focal loss with Adam optimizer
(learning rate=0.003) and L2 regularization to the weights
with a weight decay of 0.0003 to minimize the loss function.
Dropout is applied ahead of each hidden layer, but did not
significantly improve performance, hence it is set to 0. The
hyperparameters are chosen via grid search, and the best
performing parameters from training the model with the full
batch HRGCN are used for the mini-batch implementation
as well to ensure a fair comparison. The model is trained on
CPU due to the inability to process the full graph on GPU.

3) HRGCN Mini-Batch (HRGCNyyip;). To improve the
scalability of the HRGCN model, we also implemented a mini-
batch training approach with neighbor sampling. Specifically,
we randomly selected 10 edges for each node and used a
batch size of 2!* for training. We set the learning rate to
0.0001 and trained the model for 15 epochs. To ensure ef-
ficient performance, we trained the mini-batch model on
a GPU. The rest of the implementation was the same as
the full-batch HRGCN, with a 5-layer neural network using
ReLU activation, focal loss with Adam optimizer and L2 reg-
ularization with a weight decay of 0.0003. All the updated
hyperparameters for this implementation were also chosen
via grid search, and rest are set based of hyperparameters
that achieved the best performance in the full-batch HRGCN.
Algorithm 1 is the high-level pseudo code implementation
of the Mini-Batch HRGCN that was carried out in this study.

5.2 Training and Evaluation Results

The dataset contains over 4.3 million sellers of which a por-
tion of them being fraudulent. We randomly divide these
sellers into 11 even sets, leaving one set out for testing, and
the other 10 acting as the non-overlapping validation set.
In each fold, nearly 400K non overlapping sellers are set as
validation sellers maintaining the same fraud event ratio.
The fraud event ratio is intentionally withheld to safeguard
sensitive data. The dataset contains 13.7M attributes shared
by all the sellers in the whole graph creating 61M edges.
For training purpose, we include all the sellers and attribute

MLG’23, Aug 2023, Long Beach, CA, USA

Algorithm 1: Mini-Batch HRGCN with Focal Loss
and HeteroGraphNeighborSampler

Input: Heterogeneous graph G = (V, E), with N
nodes and K node types, and node features X

Output: Model parameters 6

Initialize model parameters 6

Initialize mini-batch size B, number of epochs E,
learning rate «, and y for Focal Loss

Initialize number of layers [and
HeteroGraphNeighborSampler with sampling
strategy

for epoch in 1...E do

for mini-batch b in1...N/B do
Sample B nodes from each node type using

HeteroGraphNeighborSampler

Construct a subgraph G, containing the
sampled nodes and their neighbors

Compute embeddings for nodes in G, using
R-GCN

Compute the probability distribution over
classes for each node using a fully-connected
layer and softmax activation

Compute Focal Loss using the probability
distribution and node labels

Update model parameters 6 using
backpropagation and the Adam optimizer
with learning rate o

end

end

nodes into the graph but the validation sellers will be consid-
ered as unlabeled sellers. Which means, the model only uses
the labeled nodes to compute the loss function and update
the parameters. The unlabelled nodes are used to compute
the message passing operation, but their representations are
not used in the loss computation.

From Fig 1, presents the results of the experiment on two
variations of the HRGCN model, namely HRGCNjy;p; and
HRGCNFy;, both of which were run for a different number
of epochs - 16 and 200, respectively. However, for real-world
scenarios, we implemented early stopping, wherein the train-
ing was stopped if the F1 score or loss didn’t improve for
more than 10 epochs. The figure also includes the F1 score
of the Random Forest model as a baseline reference. The re-
sults indicate that the F1 score of HRGCNyyip; converges
and reaches its peak performance by the 9th-10th epoch,
whereas HRGCNp,; converges around the 180-200th epoch.
The validation loss of HRGCNyy;,; drops rapidly within the
first five epochs and then stabilizes, indicating that the model
converges quickly. Interestingly, HRGCNyn; reaches an F1
score of 0.77, which is the average F1 score, in 180 min-
utes, whereas HRGCNpy;; only reaches 0.64 in the same

MLG’23, Aug 2023, Long Beach, CA, USA

Phanindra Reddy Madduru, et al.

- —— HRGCN-MiniBatch . - —
(—— HRGCN-FullBatch HRGCN-MiniBatch -
0.7 I‘ RandomForest 0.5 —— HRGCN-FullBatch 0.7
" I A e ————
o 0r| mneze | g4 -
— ! - | —
g 0.5 / oo = ~ g 0.5 /
/ i} > = /
I/J =0 0.3 — Y
0.4 ‘ —Z_ = 0.4 “
| o4 | HRGCN-MiniBatch
0.3l 03 0.2 0.3| | HRGCN-FullBatch
| 0 T _ W 30 \ e ! RandomForest
Epocl
0 J 50 100 150 200 0 10 20 30 0 100 200 300 400 500
Epoch Epoch time (min)

Figure 1. F1 and Loss metrics of different models on Validation Set with respect to Epoch and Time.

Model Accuracy F1 Score Precision Recall ROC AUC PR AUC
HRGCN-Mini 0.913£0.003% 0.77240.003% 0.73540.019 0.81440.017 0.941£0.002% 0.849+0.004x
HRGCN-Full 0.848£0.005 0.666+0.004 0.555+£0.012 0.835£0.018+ 0.9240.005 0.7840.014
RandomForest 0.878£0.001 0.531+0.003 0.883£0.002+ 038+0.003 0.89+0.001 0.7370.002
Table 1. Aggregated Results for Each Model

time. HRGC Ny takes around 450-500 minutes (8 hours) to ro[= PR CURVE

converge, whereas HRGCNjin; takes only 180 minutes (3 09 —— **T:t\\x\\

hours). The most interesting observation is the time taken 0.8

for the model to converge. The HRGCNyy;y; reaches to 0.77 0.7

F1 score (which is the average F1 score for HRGCNyip;) in § 0.6

180 min where as the HRGCNp,; reaches only 0.64 in the 8 0.5

same time. The HRGCNpy; converges around 450-500 min & g::

(8 Hours) while the HRGCNjy;p; converges around 180 min 02| — HRGCN-FullBatch-0.79

(3 hours). During the experiments, we noticed a deceleration 0.1| — HRGCN-MiniBatch-0.85

in the F1 score and validation loss of HRGCNy;p; after the 0.0 Randomforest-0.74

12th epoch, despite the training dataset metrics showing an
improvement. This behavior could be indicative of overfit-
ting. In order to mitigate this issue, we implemented early
stopping in the training of production models, halting the
training process by the 10th epoch, thereby improving the
efficiency of the training process as well as time taken to
train.

Table 1 shows the performance of the both the HRGCN
models and Random Forest models on the validation set.
The HRGCNyin; model has the highest scores in all met-
rics, except Precision where it is slightly lower than the
RandomForest model. The HRGCNpg,,;; model has lower scores
compared to the HRGCNyy;,; model, but it still performs bet-
ter than the RandomForest model in most metrics.

These results indicate that the HRGCNy;,; model outper-
forms both the HRGCNFg,;; and RandomForest models in
most metrics. The HRGCNyy;,; model also has the highest
ROC AUC and PR AUC scores, indicating that it performs
better at identifying risky related sellers compared to the

00 01 02 03 04 05 06 07 08 09 1.0
Recall

Figure 2. PR Curves Comparing the both HRGCN models’
and baseline model RandomForest

other models. The results highlight the significance of fine-
tuning the HRGCN model’s architecture to attain optimal
performance and scalability, particularly for handling exten-
sive datasets.

5.3 Seller clustering using learned embeddings

To assess the performance of the HRGCN models’ learned em-
beddings, we plotted the embeddings using the t-distributed
stochastic neighbor embedding (t-SNE) technique. The em-
beddings were colored by their ground truth labels to help
distinguish the classes. From the resulting plot, we observed
that both models produced separable clusters of classes, in-
dicating that they have learned meaningful representations
of the graph data. However, there was a clear difference in
the quality of the embeddings between the two models.

A Heterogeneous Graph-based Framework for Scalable Fraud Detection

HRGCN Mini-Batch Seller Embeddings (10000 samples)

MLG’23, Aug 2023, Long Beach, CA, USA

HRGCN Full-Batch Seller Embeddings (10000 samples)

Block

601 Normal

40

204

—20

—40

—60 -

T
—80 -60

Block
Normal

80 -

60

40 A

—204

-40 1

_60 4

60 80

Figure 3. t-SNE Plot of the Seller Embeddings Generated by both the HRGCN models

Specifically, we observed that the embeddings generated
by HRGCNyy;,; were much better separated and formed
more distinct clusters compared to HRGCNp,;. The clus-
ters in HRGCN)y;n; were more tightly packed and had less
overlap between classes, indicating a higher level of accu-
racy in the model’s classification performance. In contrast,
HRGCNFpy; produced more spread-out clusters with more
overlap between classes, indicating a lower level of accuracy
in the model’s classification performance. Therefore, we can
conclude that the embeddings generated by HRGCNyin; are
more accurate and useful for clustering the data.

6 Conclusion and Future Work

In this study, we investigated the HRGCN architecture and
its scalability for predicting risky related sellers on large
datasets. We introduced a new variant of HRGCN, HRGCNyini,
and compared its performance with the traditional HRGCNp,;
implementation on detecting bad actors. Our results indicate
that the HRGCNyyin; model outperforms the HRGCNgy;
model in terms of the F1 score, validation loss, and conver-
gence time. Specifically, HRGCNyyip; achieved its maximum
performance in 2.5 hours, while HRGCNpg,; took 8 hours to
converge, reducing training time by almost 70%. Moreover,
the precision recall metrics show that HRGCN)y;p; outper-
forms HRGCNF,;; and Random Forest models, achieving a
recall of 63% at 90% precision (see Figure 2 for PR-Curve
comparisons). This represents an 80% improvement over the
baseline model and a 46% improvement over the HRGCNp,;
model. The embeddings generated by HRGCNpy;y; also demon-
strate better class separability compared to HRGCNp,;;. Our
study emphasizes the importance of optimizing the HRGCN
architecture to achieve high performance and scalability for
large datasets. The outcomes of our research can offer impor-
tant insights for researchers working on similar problems. In

our forthcoming work, we aim to investigate supplementary
methods to enhance the performance of HRGCN. Addition-
ally, we intend to incorporate the HRGCN Explainer compo-
nent to create a comprehensive framework. Additionally, we
aim to leverage the embeddings generated by HRGCN for
downstream tasks. One such application is to transition from
individual seller analysis to identifying clusters of bad actors.
This approach will require applying clustering techniques
such as K-Means on the generated embeddings to identify
clusters of bad actors that are linked through various rela-
tionship edges.

References

[1] Jaime Acevedo-Viloria, Luisa Roa, Soji Adeshina, Cesar Olazo, Andrés

Rodriguez-Rey, Jose Ramos, and Alejandro Correa-Bahnsen. 2021. Re-

lational Graph Neural Networks for Fraud Detection in a Super-App

Environment. ArXiv preprint arXiv:2106.04341 (2021).

awslabs. [n.d.]. Implementation of HeteroGraphNeighborSampler.

([n.d.]). https://github.com/awslabs/sagemaker-graph-fraud-

detection/blob/master/source/sagemaker/sagemaker_graph_fraud_

detection/dgl_fraud_detection/sampler.py.

H. Chen, E. Kiciman, W. Marczak, and Y. Cheng. 2018. GCMC: Graph

Convolutional Matrix Completion. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing.

H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song. 2018. Learning

Steady-States of Iterative Algorithms over Graphs. In Proceedings of

the 35th International Conference on Machine Learning.

[5] Boning Li et al. 2022. GNN-based Seller Risky Relations Model. In
Amazon Machine Learning Conference.

[6] Michael Schlichtkrull et al. 2018. Modeling Relational Data with
Graph Convolutional Networks. In European Semantic Web Conference.
Springer, 593-607.

[7] W. L. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information
Processing Systems. 1024-1034.

[8] T.Y.Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. 2017. Focal Loss
for Dense Object Detection. In Proceedings of the IEEE International

[2

—

3

—

[4

[l

https://github.com/awslabs/sagemaker-graph-fraud-detection/blob/master/source/sagemaker/sagemaker_graph_fraud_detection/dgl_fraud_detection/sampler.py
https://github.com/awslabs/sagemaker-graph-fraud-detection/blob/master/source/sagemaker/sagemaker_graph_fraud_detection/dgl_fraud_detection/sampler.py
https://github.com/awslabs/sagemaker-graph-fraud-detection/blob/master/source/sagemaker/sagemaker_graph_fraud_detection/dgl_fraud_detection/sampler.py

MLG’23, Aug 2023, Long Beach, CA, USA

Conference on Computer Vision. 2980-2988.

[9] N.Kip Thomas and Max Welling. 2017. Semi-supervised Classification
with Graph Convolutional Networks. In International Conference on
Learning Representations.

[10] T. Zhou, Z. Jia, Q. Li, and J. Li. 2021. Research on the Application
of Focal Loss in the Field of Imbalanced Data. Multimedia Tools and
Applications 80, 10 (2021), 15029-15044.

Phanindra Reddy Madduru, et al.

A Heterogeneous Graph-based Framework for Scalable Fraud Detection

7 Appendix
A Sample Network Structure

MLG’23, Aug 2023, Long Beach, CA, USA

A sample sub-graph of a seller node connected to various signals and other known bad actors.

&

seller

email

X

Seller

=

credit_card

Figure 4. An example of the graph structure is presented, illustrating how sellers are interconnected through various attributes

such as email, ubid, and financial signals.

email

&
seller
09 =
email
crofit_card
°
s
seller
=l
email
ubid'
*
seller

verified_phone

.-
o
seller

=

email

email

ubid

2]

email

[
an
seller

&
sellef .
&
= seller
email
email
r 4 .
- L]
opler ° seller
seller &
seller
. %
& B
soller seller
email
..
¥ as
.
seller
seller .

seller
seller
seller

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Construction
	3.1 Data Sources
	3.2 Graph Construction

	4 Methods
	4.1 Random Forest
	4.2 HRGCN architecture
	4.3 Mini Batch HRGCN architecture
	4.4 Neighborhood Sampling
	4.5 Focal Loss Function

	5 Experimental Setup
	5.1 Candidate methods
	5.2 Training and Evaluation Results
	5.3 Seller clustering using learned embeddings

	6 Conclusion and Future Work
	References
	7 Appendix
	A Sample Network Structure

