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ABSTRACT 
Complex information can be represented as networks (graphs) char-
acterized by a large number of nodes, multiple types of nodes, and 
multiple types of relationships between them, i.e. multiplex net-
works. Additionally, these networks are enriched with diferent 
types of node features. 

We propose a Semi-supervised Embedding approach for Attrib-
uted Multiplex Networks (SSAMN), to jointly embed nodes, node at-
tributes, and node labels of multiplex networks in a low dimensional 
space. Network embedding techniques have garnered research at-
tention for real-world applications. However, most existing tech-
niques solely focus on learning the node embeddings, and only a 
few learn class label embeddings. Our method assumes that we have 
diferent classes of nodes and that we know the class label of some, 
very few nodes for every class. Guided by this type of supervision, 
SSAMN learns a low-dimensional representation incorporating all 
information in a large labeled multiplex network. SSAMN integrates 
techniques from Spectral Embedding and Homogeneity Analysis to 
improve the embedding of nodes, node attributes, and node labels. 
Our experiments demonstrate that we only need very few labels 
per class in order to have a fnal embedding that preservers the 
information of the graph. To evaluate the performance of SSAMN, 
we run experiments on four real-world datasets. The results show 
that our approach outperforms state-of-the-art methods for down-
stream tasks such as semi-supervised node classifcation and node 
clustering. 

CCS CONCEPTS 
• Computing methodologies → Machine learning algorithms; 
• Networks → Network properties. 
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1 INTRODUCTION 
Complex data from diferent domains can be represented by net-
works (graphs). There are many examples of these networks in 
various felds: social networks [6], collaboration or citation net-
works [29], biological networks or brain networks [38], and many 
more. Through networks, we represent diferent entities by nodes 
and diferent relations between two nodes by edges. In social net-
works, nodes represent users who are friends or follow each other; 
in collaboration networks, nodes represent authors who worked 
together; in brain networks, nodes represent brain regions and their 
communication. Additionally, networks are often enriched with 
node attributes (features). They represent diferent characteristics 
of nodes, e.g., in social networks, node attributes can represent 
education, gender, or occupancy, or in collaboration networks, the 
number of citations, number of publications, or h-index. When 
there exist diferent types of relations between nodes, we can use 
multiplex networks to represent such complex settings, and an 
example is shown in Figure 1. 

Attributed multiplex networks (AMNs) have received great at-
tention from the data mining community as it is becoming more 
evident that they are a powerful tool to model real-world scenarios. 
However, performing data mining tasks, such as node clustering, on 
AMNs poses challenges. Although the concept of community is rel-
atively intuitive, there has been no formal defnition of community 
on which there is general consensus [4]. Also, existing computa-
tional problems, such as fnding the best communities of AMNs, 
are computationally very expensive. 

Given the graph size, embedding techniques are often applied 
to obtain a compressed data representation without losing impor-
tant information. However, many works focus on designing sim-
ple graph embedding methods for graphs with a single type of 
edges [12, 17, 31, 36, 39, 46]. Existing multiplex network methods 
learn node embeddings using solely structural information [19, 
23, 24, 45], and only some of them encode node attribute informa-
tion [13, 15, 26, 30, 35, 41, 44]. 
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Figure 1: An attributed multiplex network. Diferent types of nodes 
are represented by diferent shapes (circle, star, and diamond). Layers 
I and II represent diferent types of relationships. Colored nodes 
represent labeled nodes, and question-marked nodes (?) represent 
unlabeled nodes. Node attributes are illustrated by boxes colored 
according to their values. The same nodes in two diferent layers are 
connected by a dashed line. 

Nevertheless, to our knowledge, no approach is dedicated ex-
plicitly to the embedding of diferent types of nodes, diferent 
types of categorical attributes, and node labels from AMNs in the 
same dimensional space. Thus, in this work, we propose a Semi-
supervised Embedding method for Attributed Multiplex Networks 
called SSAMN to embed nodes, node attributes, and node labels 
of AMNs to a joint low dimensional space with a focus on semi-
supervised node classifcation and node clustering tasks. 

Recently, semi-supervised learning has been gaining much trac-
tion for its practical benefts. There is a lack of labeled data in many 
tasks, and it may be challenging to obtain the labels because they 
require human annotators and special and expensive devices. Lately, 
semi-supervised methods have been often applied to diferent do-
mains mainly related to drug discovery, classifcation of new drugs 
as toxic or not toxic, or drug repurposing [32, 34]. In these scenar-
ios, neither supervised nor unsupervised learning algorithms can 
efectively use a few labeled data and a large number of unlabeled 
data. Our main contributions are: 

• We propose a semi-supervised joint embedding approach for 
nodes, node attributes, and node labels of attributed multi-
plex networks. Going beyond existing methods, our frame-
work handles diferent relation types, considering all types 
of information in order to obtain embeddings with the same 
dimensionality in the same vector space. 

• We show how to exploit Homogeneity Analysis [9] and Lapla-
cian Eigenmaps [3] to have the joint embedding of nodes, 
node features and node labels in the same vector space for 
multiplex networks with or without node attributes. 

• We evaluate the proposed approach on real-world datasets 
with various evaluation metrics to demonstrate the efective-
ness of the proposed method. 

• We highlight the expressivity of our method in providing the 
interpretability of the results through a visualization task 
using a few dimensions of our embeddings. 

• We design a new approach, SSAMN, that has only one tuning 
parameter, the dimensionality parameter. 

2 RELATED WORKS 
Several works focus on semi-supervised learning on networks. We 
can classify them based on diferent categories. 

Attributed Networks (ANs). To the best of our knowledge, 
one of the most powerful methods for embedding attributed sim-
ple networks is Deep Graph Infomax (DGI) [39]. DGI [39] exploits 
deep learning and uses a graph convolutional network architecture 
to maximize the mutual information between patch representa-
tions and corresponding high-level summaries of networks. Other 
interesting approaches are [12, 17, 31, 36, 46]. 

Multiplex Networks (MNs). Diferent methods [19, 23, 24, 45] 
have been developed to perform diferent tasks on multiplex net-
works. A limitation of these methods is that they are not designed to 
utilize the information from node attributes. The best performer in 
this category, as shown in [15, 24, 30], is Deep Multi-Graph Cluster-
ing (DMGC) [24]. DMGC is an unsupervised deep learning method, 
and it performs two tasks: network clustering and cross-network 
cluster association. 

Attributed Multiplex Networks (AMNs). Recently, AMNs 
have started to receive more attention, and one of the frst ap-
proaches which emphasized the importance of multiplex networks 
is a Heterogeneous Graph Attention Network (HAN) [41]. HAN [41] 
is a semi-supervised graph neural network approach based on two 
attention-level mechanisms, hierarchical node-level, and metapath-
level attentions. Representation Learning for Attributed Multiplex 
Heterogeneous Networks (GATNE) [7] is an approach that sup-
ports transductive and inductive embedding learning for attributed 
multiplex networks. Another method is presented in [30]: Unsu-
pervised Attributed Multiplex Network Embedding (DMGI), which 
is an extension to DGI [39] and employs the InfoMax principle 
for multiplex networks. Two other approaches that consider mu-
tual information are HDMI: High-order Deep Multiplex Infomax 
(HDMI) [15], and Semi-Supervised Deep Learning for Multiplex 
Networks (SSDCM) [26]. The HDMI approach is a self-supervised 
framework that extends the previous works, DGI and DMGI, but 
performs a supervised node classifcation task. SSDCM is a semi-
supervised approach that employs the mutual information between 
the local node and global label representation. More recently, two 
approaches designed for heterogeneous networks have been pub-
lished: Implicit Graph Neural Networks (IGNN) [13] and Network 
Schema Preserving Heterogeneous Information Network Embed-
ding (NSHE) [47]. The IGNN [13] approach is a graph learning 
framework that captures long-range dependencies in networks. 
Whereas the NSHE [47] approach uses subgraphs and multi-task 
learning tasks to sustain the heterogeneous structure of a network. 
Presented results on both original papers show that IGNN [13] 
outperforms NSHE [47]. 

Most of the above-mentioned methods apply semi-supervised or 
supervised learning techniques when considering node classifca-
tion or node clustering tasks, or both, and we focus on comparing 
our work with those baselines. Although in the meantime, unsu-
pervised methods designed for MNs that do not use node label 
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information have been published, such as [2, 20, 27, 35]. For a com-
prehensive review, please refer to [8, 40, 48]. 

Our new approach, SSAMN, difers from the previous methods 
in the following aspects: (i) they either ignore diferent relation 
types, diferent node attributes, or both types of information (ii) 
they do not provide a joint embedding of nodes, node attributes, 
and class labels and, as shown in Section 5, (iii) they exhibit good 
performances only in one task or for a single category of graphs, 
and (iv) they have many tuning parameters, up to thousands of 
parameters. Thus, if we consider the same learning process, semi-
supervised learning, our approach uses information from diferent 
types of relations and diferent categorical node attributes, with few 
labeled nodes and only one tuning parameter. It can outperform all 
baselines in diferent tasks for diferent categories of networks and 
is more expressive even with fewer dimensions. 

3 NOTATION AND PROBLEM DEFINITION 
Notation. We defne an attributed multiplex network G as a set 
of simple graphs G = {G1, G2 . . . , GR}, one for each relation type 
� = 1, 2, . . . , R. We assume that each layer in the multiplex graph 
represents a relation type. We denote by V the vertex set V = 
{�1, �2, . . . , �� }, and with � the total number of nodes. Each relation 
type � is characterized by an adjacency matrix denoted by A� , 
where � = 1, 2, . . . , R. Thus, a layer in a multiplex network can be 
denoted as G� = (V, A� ). With |A� |, we denote the number of 
edges of graph G� . 

Each node � = 1, 2, . . . , � has a set of attributes (features) denoted 
by F� = {�1, �2, . . . , �� } where � is the dimensionality of the at-
tribute space. Moreover, each node attribute � � with � = 1, 2, . . . , � , 
can have � � distinct values. For binary attributes such as the ap-
pearance of a keyword in an abstract of a paper, we have � � = 2. 
We denote the categorical value of a node attribute for node �� 
by � � (�� ). We denote by C the total number of categorical values Í� which is C = =1 � � .� 

For our semi-supervised method, we denote a set of labeled nodes 
by L, a subset of V . Thus, L = {1, 2, . . . , �}, with � >> �. Each 
label can have a value � ∈ {1, . . . , � }, as � is the total number of 
classes. Each labeled node of an attributed multiplex network is 
embedded into a low dimensional vector space with other nodes 
and each category of node attributes. 

Problem defnition. Many approaches learn representation 
on multiplex networks by embedding the nodes for each layer 
� into a low dimensional vector space, and then they aggregate 
embeddings of each layer into a joint embedding. Such methods 
exploit a Graph Convolutional Networks (GCNs) architecture [30, 
39, 49]. Diferently, our approach is designed to utilize information 
from all � layers and generate a joint node embedding which is 
updated for a few iterations using all available information from 
the network structure, node attributes, and node labels. 

Thus, our approach defnes a mapping M : G → R� , where 
� is the dimensionality, and the goal is that nodes with similar 
characteristics are close to each other in the embedding space. 
SSAMN provides us with two matrices, the frst one denoted by 
Z�×� with the node embeddings, and the second one, Y ( C+� )×� 

with node feature and node label embeddings. The coordinate for 
a node �� in a dimension � = 1, . . . , � is defned by ��,� , that of an 

attribute � � with categorical value � � (�� ) is defned by �� �� ,� , and 
the coordinate for class � = 1, . . . , � is defned by �C+�,� . 

Our algorithm SSAMN is sketched in Algorithm 1 and it takes as 
input a graph G, which consists of R adjacency matrices of order 
� × �, an attribute matrix of order � × C, a matrix of labeled nodes 
of order � × � , and dimensionality � . The output of our method is 
a �-dimensional vector space representation of nodes denoted by 
matrix Z, and a �-dimensional vector space representation of node 
attributes and labels. Also, our method can be applied to a single 
network with or without node attributes or multiplex networks 
without node attributes. The fnal embeddings of SSAMN are suit-
able for tasks such as semi-supervised node classifcation and node 
clustering. Moreover, visualization is possible and it helps to obtain 
a better understanding of the datasets by showing embeddings of 
similar nodes, node attributes, and class labels and highlighting 
their impact on each other. 

4 PROPOSED METHODOLOGY 
Our method is designed for mixed-type data of several modalities. 

In our problem setting we have a set of nodes that are linked by 
various relations and are characterized by many node attributes, 
and also, we have few nodes for which we have class information. 
The aim of our algorithm is to generate a joint vector space repre-
sentation that integrates all of the distinct modalities. Our objective 
function combines notions of spectral embedding of graphs and 
homogeneity analysis of categorical data. Additional details about 
our approach are given in Figure 3. 

4.1 Embedding Attributed Multiplex Networks 
First and foremost, spectral embedding is a well-known technique 
for representing information such as networks into a low dimen-
sional space [28, 42, 43]. We adapt this technique for our problem 
setting, and as in [35], we adjust it for multiplex networks. Given a 
multiplex network, we aim at minimizing the distance in low di-
mensional space between two nodes �� and � � , which are connected 
in any layer of the multiplex graph, and we minimize the euclidean 
distance between them in dimension � : 

| |��,� − � �,� | |2 (1) 

Our approach outputs a �-dimensional embedding and we min-
imize the distance of connected nodes in all �-dimensions. Each 
edge (�� , � � ) in the graph G� of relation type � can be weighted 
or unweighted; we denote the weight by �� (�, �). Additionally, we 
introduce a normalization term, ��, � , which denotes the euclidean 
distance of two connected nodes �� and � � in low-dimensional space 
over all dimensions � . To consider that into our approach we ex-
tend (1) as follows: 

� ∑ ∑1 | |��,� − � �,� | |2 
�� (�, �) · . (2)2 ��, � 

�=(�� ,�� ) ∈�� �=1 

While considering each relation type, we need to defne a weight-
ing factor for each layer, denoted by �� . Diferently from the spectral 
embedding technique, where only one relation type is considered, 
here, our approach considers all diferent relation types. Thus we 
extend equation (2) as follows: 
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R � 1 ∑ ⎛ ∑ ∑ | |��,� − � �,� | |2 ⎞ 
�� · ⎜ �� (�, �) · ⎟ (3)

��, � 2 
� =1 ⎝�=(�� ,�� ) ∈�� � =1 ⎠ 

Equation (3) represents the impact of network structure over the 
node embedding. Also, it is possible to consider all R relation types 
with the same weight, setting �� = 1. That case would represent 
the unweighted impact of network structure on node embeddings. 

Besides the structure impact, we use the available information 
on node attributes to improve the node embedding. In order to 
use node attribute information, we adapt the Homogeneity Anal-
ysis method [9], a technique from statistics for PCA of discrete 
data [16]. By applying homogeneity analysis, we are able to con-
struct a bipartite graph between nodes of multiplex networks and 
their categorical attributes. Each categorical node attribute, � � , con-
structs its own bipartite graph, and each category of a node attribute 
� �� is connected to the corresponding node �� . An illustration of a 
bipartite graph is shown in Figure 2. 

SSAMN is a semi-supervised joint embedding approach, and we 
assume that a few labeled nodes for the multiplex networks are 
given. Then, for the given information, we apply Homogeneity 
Analysis for node labels, similarly as we showed for node attributes. 
Thus, we construct a bipartite graph for node labels � = 1, . . . , � 
of the ground truth data, and each node �� is connected with its 
corresponding class �. In this case, we have only a few edges in the 
bipartite graph as we have only a few labeled nodes. If for a node 
� � we are not given any information about its label, then node � � is 
not connected to any class label � in the bipartite graph. 

We acknowledge the impact of embeddings of any node attribute 
F� with a categorical value � , on any node embedding ��,� by min-
imizing the distance between node �� and its corresponding cate-
gorical values as follows: ∑� � � ∑ ∑ 

� F� 
· | |��,� − �F�� ,� | |2 (4) 

�=1 �=1 � =1 

Similarly, we include the information from node labels for the 
labeled nodes, and we minimize the distance in the low dimensional 
space between labeled nodes and their corresponding class label � 
as follows: 

� � � ∑∑ ∑ 
�� · | |��,� − �C+�,� | |2 (5) 

�=1 �=1 � =1 

The coefcients � F� 
and �� represent the weighting factors for 

node attributes and node labels, respectively. To set the value of 
all these coefcients, including �� , we introduce the parameter �, 
and it represents the maximum between two values: the number 
of edges of the relation type with higher density in the multiplex 
network or the number of edges in the bipartite graphs generated 
by the attributes and the labels. Then, each coefcient is computed 

� as �� = |A� | , where |A� | denotes the total number of edges in the 
� adjacency matrix corresponding to the relation type � ; � F� 

= |AF� | 
, 

where |AF� 
| represents the number of edges in the bipartite graph 

generated by all categorical values of the node attribute F� . For the 
node labels, the weighting coefcient depends on the importance 

� we assign to the given labels; we set �� = 
�� 

, by � we denote 

the total number of labeled nodes, and by �� we denote the total 
number of nodes labeled with a class label �. 

4.2 Objective Function 
Here we show that in order to obtain the fnal low-dimensional 
representation of nodes, node attributes, and node labels, we mini-
mize the following objective function defned by combining ideas 
represented in equations (3), (4), and (5): 

R ∑ � ∑ ∑ 
min 

1 
�� · 

⎛
⎜ �� (�, �) · 

| |��,� − � �,� | |2 ⎞
⎟2 ��, � � =1 ⎝�=(�� ,�� ) ∈�� � =1 ⎠ ∑� � � ∑ ∑ 

+ � F� 
· | |��,� − �F�� ,� | |2 

�=1 �=1 � =1 

� � � ∑∑ ∑ 
+ �� · | |��,� − �C+�,� | |2 

�=1 �=1 � =1 

subject to Z� Z = �� . (6) 

We apply the Gram-Schmidt orthonormalization algorithm [33] 
to node embeddings such that the matrix Z is column-orthonormal, 
ensuring we avoid trivial solutions. 

In order to obtain embeddings for nodes, node attributes, and 
node labels, we randomly initialize matrices Z and Y for all in-
stances � and C + � , respectively (line 1 in Algorithm 1). Dimen-
sionality for both matrices is � , given as the input parameter. In 
each run of Algorithm 1, these matrices are updated. To update 
node embeddings in matrix Z, we iterate through all nodes �� , all 
the relation types � , and all the neighbors �� of node �� . We update, 
in dimension � , the coordinate ��� by adding the product of the 
weighting factor of relation type � , with the edge weight �� (�, �), 
and the embedding value of node �� in dimension � . Finally, this 
product is divided by ���� (A, F , L) (line 3 − 7). This value is com-
puted by summation of the product of the degree of node �� in 
relation type � with the weighting factor of that relation type �� . 
Then we add the weighting factor of each categorical node attribute 
� F� 

and node label �� to that sum. 

Nodes Class labels Attribute A Attribute B Attribute C 

. . . 

Figure 2: Bipartite graphs between nodes, class labels, and node 
attributes. Labeled nodes are connected to class labels and are colored. 
All nodes are linked with attributes according to their categorical 
value. 
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Algorithm 1: SSAMN 
Input: A multiplex graph G (R adjacency matrices A� , feature matrix F, 

node labels L), dimensionality � 
Output: �-dimensional feature space representation of data objects Z, 

categories and classes Y 
1 Initialize matrices Z and Y randomly; 
2 repeat 

/* update node embeddings */ 
3 for � = 1, . . . , � do 
4 for � = 1, . . . , R do 
5 for � = 1, . . . |�� | with �� = {�� | (�� , �� ) ∈ G� } do 
6 for � = 1, . . . , � do 
7 ��� ← ��� + �� · �� (�, � ) · ��� /���� (A, F, L) ; 
8 for � = 1, . . . , � do 
9 for � = 1, . . . , � do 
10 ��� ← ��� + �F� · �F�� � /���� (A, F, L) ; 
11 if node � is labeled then 
12 if node � has label � then 
13 for � = 1, . . . , � do 
14 ��� ← ��� + �� · � (�+� )� /���� (A, F, L) ; 
15 else 
16 for � = 1, . . . , � do 
17 ��� ← ��� − �� · � (� +� )� /���� (A, F, L) ; 
18 Apply Gram-Schmidt orthonormalization algo. to ensure Z� Z = �� ; 

/* update category and class embeddings */ 
19 for � = 1, . . . , � do 
20 for � = 1, . . . , � do 
21 for � = 1, . . . , � do 
22 �F�� � ← �F�� � + ��� /���F� ; 
23 for � = 1, . . . , � do 
24 for � = 1, . . . , � do 
25 � (� +� )� ← � (� +� )� + ��� /���� ; 
26 until convergence; 
27 return Z, Y; 

Similarly, we consider the impact of node attributes and node 
labels on node embeddings by updating the embedding of node �� 
(line 8-17 ). To update the embedding of node �� , in dimension � , 
we add the product of the weighting factor of the categorical node 
attribute � F� 

, and the embedding of the corresponding categorical 
value of node attribute F�� , in dimension � , denoted by YF�� � , which 
we divide by the weighted sum of node �� . We repeat the same steps 
for updating the node embedding using the node label information 
when the label is available for the node. If node �� has label � then 
we update the embedding of that node, in dimension � , by adding 
the product of the weighting factor for the node label �� , and its 
embedding in dimension � , denoted by � (�+� )� , which we divide by 
the weighted sum of node �� . Otherwise, if class label for node �� is 
not the label � , then we subtract the product of the weighting factor 
for the class label �� , and its embedding in dimension � , which we 
divide by the weighted sum of node �� . Thus, our approach forces 
the embedding of nodes in low-dimensional space to be closer to 
their corresponding class label and further apart from other class 
labels. 

In order to have the matrix Z column-orthonormal, we apply 
the Gram-Schmidt orthonormalization algorithm [33] (line 18). 

To update embeddings of the categorical node attributes, �F�� ,� , 
and the node labels, �C+�,� , we iterate through all nodes, all cat-
egorical values of node attributes � , and node labels, � , for each 
dimension � (line 19 − 25). For the categorical attribute �F�� 

, we 
update its embedding, in dimension � , by adding the division of the 
node embedding �� , which is connected to that categorical attribute 
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in the bipartite graph, and the degree of the categorical attribute in 
the bipartite graph. Similarly, for the class label � , we add to its em-
bedding, � (�+� ) , the division of the node embedding �� , represented 
by ��� , and the degree that the class label has in the bipartite graph. 

Complexity analysis. Lines 4 − 7 in Algorithm 1 compute the 
contribution provided by the relational types and network structure 
to the fnal embedding. Its time complexity is � (R ·� ·�), where � 
is the number of edges. Lines 8 − 17 compute the contribution given 
by the categorical attributes and the class labels. Here the time 
complexity is � (C · �). In line 3, we iterate over all nodes; thus, the 
time complexity of lines 3 − 10 for updating the node coordinates 
is � (�(R · � · � + C · �)). In line 18, we apply the Gram-Schmidt 
orthonormalization algorithm with complexity � (� · �2). In lines 
19 − 25, we update the coordinates of the categorical attributes 
and node labels represented as nodes in the bipartite graphs. It 
requires � (� · � (C + � )). The total time complexity of Algorithm 1 
is � (� · � · � (R · � + � + C + � )) where � is the number of iterations 
the algorithm needs in order to converge. 

Details about the run-time of SSAMN and other baselines are 
provided in the Appendix. 

5 EXPERIMENTS 
We evaluate our approach SSAMN 1 on common setup and on the 
same datasets that most of the baselines have used in their original 
papers [13, 15, 26, 30, 41]. For comparison methods, we use the 
source code published with the papers and set the values for tuning 
parameters and hyper-parameters as they are set in the original 
experiments. More details are provided in the Appendix. 

Datasets. To compare our algorithm SSAMN with other meth-
ods, we use four datasets, which are categorized as AMNs, ACM [30] 
and IMDB [30], and MNs, FLICKR [24] and DBLP [24]. More infor-
mation about the datasets is provided in the Appendix. 

Baselines. We compare SSAMN against various state-of-the-art 
methods described in Section 2, namely, node2vec [12], GCN [17], 
DGI [39], HAN [41], GATNE [7], DMGI [30], DMGC [24], HDMI [15], 
IGNN [13] and SSDCM [26]. We compare our proposed approach 
with those baselines that have shown the best performances for 
each network category; therefore, some related works are not in-
cluded in the conducted experiments. 

Evaluation. We use a random sampling strategy to split the 
nodes into the train, validation, and test sets. For the ACM and IMDB 
datasets we use the same number of samples for each set as in [13, 
15, 26, 30, 41]. Similarly, for the other two datasets, FLICKR and 
DBLP, we set 20% of labeled nodes for training, 10% for validation, 
and the rest for testing. For fair comparisons, we randomly split 
our datasets 5 times each. Our proposed approach, SSAMN, for the 
node classifcation task applies the logistic regression classifer with 
10 cross-fold validation and subsequently is evaluated on the test 
set. As an evaluation metric for the classifcation task, we compute 
Micro-F1 and Macro-F1 scores. Results for the node classifcation 
task are reported in Table 1. To evaluate our algorithm for the node 
clustering task, we apply K-Means on the fnal node embeddings of 
the test set by setting K to the number of clusters and K-Means++ 
for initialization. We run it 100 times and report the average results. 
We apply the same method for all baselines too. For the clustering 

1We provide our code here: https://gitlab.cs.univie.ac.at/yllis19cs/ssamn/ 
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Figure 3: The framework of SSAMN. The input network consists of diferent types of nodes (circles, stars, diamonds), diferent relation 
types (bold, dashed, and dotted lines), node attributes (boxes next to nodes), and node labels. The data is represented as adjacency matrices 
corresponding to relation types and an attribute-label matrix that holds node attributes and class label information. Each relation type is 
characterized by a weighting factor, and two additional weighting factors correspond to categorical node attributes and class labels. Then 
SSAMN embeds nodes, node attributes, and node labels to the same vector space and outputs the fnal embeddings. These embeddings can be 
used to classify or cluster the nodes into similar groups (�1 and �2) or visualize them. 

task, we compute Normalized Mutual Information (NMI) [14] and 
Adjusted Rand Index (ARI) [14], results are reported in Table 1. 
Additionally, for an extensive evaluation of the node clustering 
task, we use the NR-KMeans algorithm [25]; more information 
is provided in the dimensionality representation paragraph. For 
both tasks, node classifcation, and node clustering, we report the 
average results on the test set over 5 random sets for each dataset. 

Our parameter setting. For our method, regarding our only 
parameter, dimensionality, we set it � = 32 for AMNs and � = 128 
for MNs. As for the MNs, we do not have additional information 
provided by node attributes; therefore, we use more dimensions 
to capture a more enhanced representation of the data in the low-
dimensional space. One of the benefts of our method is that it has 
only one parameter, dimensionality, compared to baseline methods 
such as [17, 41], as mentioned in [21], which need to train a large 
number of parameters as well as a long training time. We use early 
stopping criteria with the patience of 20 (extra-iterations), i.e., we 
stop training if the objective function value does not decrease for 
20 consecutive iterations. 

Performance Analysis. Results in Table 1 show that methods 
designed for AMNs do not perform with the same efciency when 
they are applied at least to one of MNs, FLICKR, or DBLP, compared 
to when they are applied to AMNs, ACM, and DBLP. Therefore, we 
perform the node clustering task only on AMNs, and the results are 
shown in Table 1. Overall, we observe that our proposed approach, 
SSAMN, outperforms all baselines for all datasets for both tasks. 

Regarding the node classifcation task, node2vec, GCN, DGI, and 
DMGC do not perform well, and their performance is not as good 
as the other baselines due to the fact that they disregard multi-
relational edge types, node attributes, or both. DGI can preserve the 
cluster structure better and therefore is one of the best performers 
for the clustering task. We observe that methods, which lack the 
mechanism to handle node attributes, are better performers for 
MNs than AMNs. Their performance emphasizes the importance 
of node attributes in the fnal embeddings. 

Most AMN embedding methods (HAN, DMGI, DMGI attn, HDMI, 
and SSDCM) show very competitive performance and achieve good 
results on all AMNs, but their performance drops for at least one 
of the MNs. This is due to the fact that the weight or attention 
mechanisms constructed by these methods for node attributes are, 
by default giving high importance (weight) to them and can not 
be adjusted if node attributes are missing. Surprisingly, GATNE is 
among the poorest performers regarding both tasks, even though it 
uses base embeddings and edge embeddings to capture the infuen-
tial factors between diferent edge types. We observe that the best 
performers from baselines for both AMNs, for both tasks, are the 
methods that are designed to maximize the Mutual Information, 
DMGI, and HDMI. The diference between these two approaches 
is that the DMGI approach applies a regularization strategy that 
jointly integrates the embeddings from diferent relation types by 
reusing the negative node representations used for learning the 
discriminator weights, which shows to be more helpful when the 
training set is smaller, in case of the DBLP dataset. On the other 
hand, the HDMI approach emphasizes the dependence between 
node embedding and node attributes in multiplex networks by using 
a joint supervision signal that employs high-order mutual informa-
tion. On the other hand, the performance of the IGNN approach is 
very consistent and competitive, as it achieves good performance 
for both categories of networks and tasks. The reason is that IGNN 
captures long-range dependencies in networks based on a fxed-
point equilibrium equation facilitated using the Perron-Frobenius 
theory to formulate well-posedness conditions. Interestingly, the 
SSDCM approach observes a well-defned structure and more com-
petitive performance only for the FLICKR dataset, even though it 
has a joint node and cluster representation for multiplex networks. 
The lack of node attribute embeddings in the joint representation 
afects its performance. 

Overall, our approach, SSAMN, is the best performer for all 
datasets, showing that it can perform well on small AMN, such 
as IMDB, and larger datasets, such as ACM, DBLP, and FLICKR. 
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Table 1: Node classifcation performance on test data for AMNs and MNs. Node clustering performance on test data for AMNs. (Bold indicates 
the best result, while underline indicates the second best.) 

Dataset ACM IMDB FLICKR DBLP 
Metric Macro-F1 Micro-F1 NMI ARI Macro-F1 Micro-F1 NMI ARI Macro-F1 Micro-F1 Macro-F1 Micro-F1 

node2vec 
GCN 
DGI 

0.721 
0.727 
0.784 

0.723 
0.733 
0.803 

0.375 
0.484 
0.654 

0.376 
0.441 
0.695 

0.446 
0.61 
0.37 

0.48 
0.615 
0.465 

0.06 
0.125 
0.166 

0.05 
0.127 
0.14 

0.96 0.961 
0.95 0.951 
0.292 0.421 

0.75 0.751 
0.816 0.819 
0.442 0.442 

DMGC 0.614 0.691 0.502 0.452 0.659 0.66 0.078 0.071 0.335 0.335 0.745 0.756 
HAN 

GATNE 
DMGI 

DMGI attn 
HDMI 
IGNN 
SSDCM 

0.917 
0.622 
0.879 
0.898 
0.935 
0.895 
0.915 

0.916 
0.702 
0.889 
0.898 
0.933 
0.894 
0.914 

0.673 
0.54 
0.598 
0.611 
0.671 
0.651 
0.524 

0.706 
0.52 
0.597 
0.643 
0.707 
0.703 
0.475 

0.64 
0.497 
0.678 
0.655 
0.651 
0.643 
0.671 

0.645 
0.5641 
0.68 
0.659 
0.649 
0.644 
0.672 

0.193 
0.05 
0.202 
0.191 
0.176 
0.196 
0.193 

0.172 
0.051 
0.201 
0.195 
0.157 
0.213 
0.198 

0.891 0.894 
0.808 0.811 
0.926 0.929 
0.914 0.917 
0.874 0.88 
0.973 0.974 
0.959 0.96 

0.605 0.604 
0.696 0.745 
0.578 0.58 
0.465 0.47 
0.605 0.6 
0.822 0.825 
0.338 0.351 

SSAMN 0.936 0.935 0.682 0.74 0.695 0.694 0.209 0.162 0.978 0.978 0.847 0.845 

Thus, we can also note that our method outperforms other baselines 
for two categories of networks: AMNs and MNs. The main reason 
behind its performance is that embedding node attributes and class 
labels in the same vector space with node embeddings exposes the 
power of joint embedding by improving the fnal representation af-
ter each iteration until convergence. An important fact to mention 
is that our proposed approach outperforms all baselines in both 
tasks; this implies that the adaptation of laplacian eigenmaps for our 
embeddings is not benefcial only for unsupervised learning, as it 
was designed. The idea to combine it with the power of homogene-
ity analysis enables SSAMN to be applicable in a semi-supervised 
learning fashion, too. Thus, our method outputs an embedding that 
pushes similar objects, nodes, node attributes, and class labels closer 
to each other. However, if objects are dissimilar, such a case can be 
for a labeled node and other class labels to which it does not belong, 
then our method pushes them apart, as noted in Algorithm 1. Also, 
an essential aspect of SSAMN is the computation of the weight-
ing factors, which enables it to consider each relation type equally 
important and correctly measure the importance of each node at-
tribute and class label in the constructed bipartite graphs. Thus, we 
assign appropriate weights to diferent layers, even with layers that 
have distinct connectivity patterns, such as the layers of ACM and 
DBLP datasets. The weighting schema applied by our algorithm 
enables us to use laplacian eigenmaps and homogeneity analysis 
techniques for AMNs and MNs. Therefore, we emphasize the vi-
tal role of features on node embeddings, as noted in Table 2 and 
Figure 5. We provide more details in the Appendix. 

0.95 

0.9 

0.85 

0.8 

HAN
DMGI
HDMI
IGNN
SSDCM
SSAMN

100 200 300 400 500 600 
Node labels 

Figure 4: Analysis of the efect of node labels on the ACM dataset. 
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Efect of node labels. In Figure 4, we show the impact of node 
labels used for training on our proposed approach and baseline 
approaches performance for the ACM dataset. We consider the 
best semi-supervised performers designed for AMNs. The HDMI 
approach has an advantage for the frst two runs when we use 
up to 400 node labels, and we observe that the performance does 
not improve reciprocally to the increasing size of the training set. 
A similar case is reported for the DMGI approach. The SSDCM, 
IGNN, and HAN performance improves only on the frst three 
runs, but it stays almost the same, even though the training set 
size increases. On the other hand, our proposed approach has an 
advantage over semi-supervised baselines for the frst four runs, 
and then when the training set size is increased, we outperform the 
HDMI approach too. One of the main features of semi-supervised 
methods is that performance improves as the size of the training set 
increases; this applies to our proposed approach, and at the same 
time, it outperforms alternative methods. 

Dimensionality representation. To measure the expressivity 
of our method, we compare it with the best performer from base-
lines, HDMI [15]. We use the NR-Kmeans algorithm [25] to analyze 
the embeddings obtained by SSAMN and HDMI for the ACM dataset. 
The NR-Kmeans algorithm fnds � − 1 dimensions as a subspace of 
the high-dimensional space for alternative clusterings, where � is 
the number of classes. Therefore, by applying NR-Kmeans, we can 
understand if a method is able to capture more information even 
when the embedding is represented in very low-dimensional space, 
i.e., in two dimensions. In Figure 6, we show the visualization of 
the most representative subspaces for the ACM dataset, which has 
three class labels; therefore, NR-Kmeans selects two most repre-
sentative dimensions for that clustering. Thus, we observe that by 
using node embeddings with two dimensions, we are able to have 
a better representation than our best competitor for this dataset, 
HDMI. The accuracy measured by NMI [14] using only two dimen-
sions shows that the score for the HDMI approach is 0.37 and for 
our proposed approach is 0.64. Thus, the result confrms that we are 
able to capture more information in fewer dimensions. Therefore, 
embeddings obtained by our proposed approach are more power-
ful and expressive. Here we note that for our proposed approach, 
the most enriched dimensions are very few frst dimensions, and 
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(a) PSP + Attributes. (b) PAP + Attributes. (c) PAP + PSP. (d) PAP + PSP + Attributes. 

Figure 5: Visualisation of the node embedding on the ACM dataset, which consist of two layers: PSP and PAP. The three diferent colors 
represent the classes of the nodes. Nodes in the black box represent outliers (papers written by the same authors or have the same subject). 

this correlates to the embeddings obtained by the Laplacian Eigen-
maps for single graphs, which inspired our approach. Thus, for the 
node clustering task, we evaluate SSAMN using only the frst 8 
dimensions for the ACM dataset and 2 dimensions for the IMDB 
dataset. 

Ablation study. In Section 4, we stated that all layers are equally 
important; Table 2 shows the benefts of considering all layers 
equally important. We can note that the accuracy of our approach 
on each layer, when considered separately, is similar. However, 
when we combine information from all layers and use them simul-
taneously, then the overall performance improves. Also, it illustrates 
that the most important aspect is to include the information that 
node attributes provide for the dataset, as the performance dimin-
ishes the most in terms of Macro-F1 and Micro-F1 scores when 
node attributes are not considered in the embeddings obtained by 
our method. Therefore, the embedding of node attributes inspired 
by Homogeneity Analysis embraces major information within the 
fnal node embeddings. 

In Figure 5, the node embeddings are visualized by using the 
t-sne [37] approach, which validates the importance of all available 
information in the fnal node embeddings of SSAMN. Figures 5a 
and 5b show that the structure of node embeddings is not well 
defned. Slightly better embedding is preserved when the PSP layer 

(a) HDMI approach. (b) Our approach, SSAMN. 

Figure 6: Visualisation of the most representative subspaces for the 
clustering of the ACM dataset. 

Table 2: Ablation study on the node classifcation task for attributed 
multiplex networks. MaF1 and MiF1 denote Macro-F1 and Micro-F1 
scores. Sum denotes the sum weight for each node (���� (A, F, L)). 
A denotes node attributes. SSMN denotes the SSAMN version, which 
does not consider node attributes. 

Dataset ACM IMDB 
Layer PSP PAP MAM MDM 
Metric MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 

- 0.609 0.601 0.574 0.585 0.32 0.321 0.28 0.304 
Sum 0.639 0.661 0.585 0.592 0.347 0.351 0.312 0.364 
A 0.865 0.864 0.825 0.8425 0.558 0.554 0.539 0.538 

A + Sum 0.877 0.876 0.845 0.845 0.568 0.565 0.549 0.546 

Metric MaF1 MiF1 MaFi MiF1 
SSMN 

��1 = ��2 

SSAMN 

0.729 0.728 
0.894 0.893 
0.936 0.935 

0.471 0.518 
0.599 0.595 
0.695 0.694 

with node attributes is considered. In Figure 5c, we use the informa-
tion from both layers, but we do not consider node attributes, then 
the embedding degrades. In the fnal visualization, in Figure 5d, 
when we include all available information, we have a more defned 
cluster structure. 

6 CONCLUSION AND FUTURE WORK 
In this work, we propose SSAMN, a Semi-supervised Embedding 
method for Attributed Multiplex Networks that provides us with a 
low-dimensional space representation. SSAMN exploits techniques 
from Spectral Embedding [3] and Homogeneity Analysis [9] to 
obtain embeddings of nodes, node attributes, and node labels. Re-
sults of conducted experiments show that SSAMN outperforms 
state-of-the-art methods for tasks such as semi-supervised node 
classifcation and node clustering. 

As future work, we plan to exploit diferent initialization methods 
such as eigenvectors of the supra-adjacency matrix [10] inspired by 
the authors of [18] that apply eigenvectors as positional encodings 
for graph transformers with spectral attention. It would also be 
interesting to investigate the �-Laplacian eigenvectors [1, 5, 11, 22]. 
Moreover, SSAMN can be extended to be applied to hypergraphs 
where a hyperedge can be considered as an attribute of a node. 
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