UGGS: A Unified Graph Generation Framework Based on
Self-Supervised Learning

Sajad Ramezani
sramezal@ualberta.ca
University of Alberta

ABSTRACT

Deep learning on graphs has gained interest in recent years. The
applicability of graphs to model problems in various domains, such
as chemical molecules, financial transactions, parse trees, etc., has
encouraged researchers to develop and extend machine learning
methods from other data modalities, such as text and image, to
graphs. Generative models have been used extensively in recent
years and have achieved significant milestones, especially in text
and image generation. However, graph generative models have
not been developed as extensively, and fundamental problems are
still in the discussion phase. This work addresses some of these
problems, such as the lack of an integrated framework and inter-
pretable evaluation metric, by introducing a unified framework
for the graph generation task. The base of the proposed frame-
work is on the appropriate graph and node embeddings to estimate
graphs’ distribution. Hence it composes of graph neural networks
to embed the nodes and graphs and also enhances the quality of
graph embeddings via the introduction of pseudo tasks in a self-
supervised fashion. Self-supervised techniques have proven useful
in enhancing generative models to be more robust and generaliz-
able. This work proposes several pseudo tasks and evaluates their
performance on common graph datasets. It also emphasizes the
problem of graph decoding and speculates that graph generation
strategy matters, and one can establish more complex graph gener-
ation models to generate higher-quality graphs. It also proposes a
distance metric in embedding space for generated graphs to filter
out poorly generated data. In the end, the proposed framework
achieves competitive results compared to previously proposed mod-
els while having fewer parameters and a shorter training time. We
have also made our framework implementation available.

KEYWORDS

graph generation, graph neural networks, generative models, self-
supervised learning

ACM Reference Format:

Sajad Ramezani and Soroor Motie. 2023. UGGS: A Unified Graph Generation
Framework Based on Self-Supervised Learning . In Proceedings of ACM
Conference (MLG’23). ACM, New York, NY, USA, 11 pages. https://doi.org/
XXXXXXXXXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MLG’23, August 2023, Long Beach, CA, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Soroor Motie
smoti088(@uottawa.ca
University of Ottawa

1 INTRODUCTION

Graph generation, the task of generating new graphs that embody
similar characteristics to an existing set, has proven to be pivotal
in a wide spectrum of applications. These range from the intricate
realm of molecular design in pharmaceutical research [29] [7] to
the data-intensive field of financial transactions. The promise held
by graph generation models lies in their capacity to generate plau-
sible new instances. By doing so, these models present a potent
tool for simulation, augmentation, and synthesis [13]. They extend
our ability to fabricate diverse datasets, project future instances,
and even unearth patterns veiled within the complex structure of
graph-based data. Notwithstanding its inherent complexities and
challenges, graph generation underscores a vital research pursuit,
driving advancements and enabling novel possibilities in various
domains.

However, graph generation poses unique challenges compared
to other generative tasks such as text or image generation. Unlike
sequences or 2D structures, graphs are composed of discrete ele-
ments arranged in a complex, non-sequential format, often captur-
ing intricate relationships and topologies. This complexity calls for
specialized methods to model and generate novel graph structures
effectively. Additionally, evaluating the quality of generated graphs
is another significant challenge due to their high-dimensional, dis-
crete nature, and the inability for visual inspections as a measure
of quality.

The history of graph generation models stretches back to clas-
sical models such as Erdés-Rényi, Watts-Strogatz, and Barabasi-
Albert. These models served as cornerstones in understanding the
foundational properties of graph generation, based on principles of
randomization, small-world phenomena, and preferential attach-
ment respectively[20]. However, their utility has been limited due
to assumptions of homogeneity and independence among nodes,
failing to capture the nuanced heterogeneity and complex depen-
dencies within real-world graph structures[30].

As aresponse to these shortcomings, the advent of deep learning
has ushered in a new wave of methods for graph generation. Deep
generative models for graphs promise to address the limitations of
classical methods, introducing a level of complexity and adaptability
that can better mirror the intricate and heterogeneous nature of
real-world graphs.

As we venture into the complexities of various graph generation
models, the need for a unified framework becomes increasingly
apparent. Many of these models share common underlying mecha-
nisms - they learn graph representations and subsequently sample
or leverage the learnt embedding space to generate new graphs [31].
However, the diversity in their formulation and structure makes
it challenging to integrate their unique strengths effectively [9].
The proposed framework in this work aims to resolve this issue by

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MLG’23, August 2023, Long Beach, CA, USA

combining the best aspects of these diverse methods, paving the
way for a more robust graph generation model.

Building upon the conventional approach, we have introduced
self-supervised learning to our framework, focusing on the formu-
lation of innovative pseudo-tasks. This addition not only enhances
the capability of our model but also allows it to encompass the
essence of many preceding works. We have also highlighted the
importance of the decoding step, a factor often overlooked in many
models. By proposing two decoding strategies, we demonstrate the
effectiveness of a more refined decoding strategy, underscoring its
critical role in the generation process.

Additionally, we have addressed one of the more significant chal-
lenges in the realm of graph generation - the lack of interpretable
measures for evaluating the generated graphs. To counter this,
we introduced an interpretation of Maximum Mean Discrepancy
(MMD) based on graph perturbation, providing a more tangible
measure of performance.

In a bid to promote further research in this area, we have de-
veloped and open-sourced our framework. This enables other re-
searchers to apply our approach easily and develop new graph gen-
erative models, fostering faster and more effective advancements
in the field.

2 RELATED WORK

The goal of the graph generation task is to train a model on a graph
dataset derived from a specific distribution, denoted as p, such
that the model effectively captures this underlying distribution.
The model then produces a new distribution, denoted as q, which
ideally mirrors the original distribution p, allowing us to generate
graph samples from q that echo the properties of p. Some research
also introduces additional constraints to support optimization and
conditional generation, thereby enhancing the overall quality of
the generated graphs[9],[31].

The field has seen an evolution from classical to more advanced,
deep generative models. Classical models, including Erd6s-Rényi
[8], Watts-Strogatz, and Barabasi-Albert [3], laid down the initial
groundwork but were relatively simplistic and lacked the versatility
to capture complex graph structures.

Recently, deep generative models have come to the fore, show-
casing improved results by more accurately capturing intricate
graph structures and properties. Various approaches have been
used, each with their distinct perspective and strategy. For instance,
GraphRNN[30] treats graph generation as a sequential process, gen-
erating nodes and edges in a step-by-step manner akin to natural
language processing. Conversely, models like spanning tree-based
graph generation [1] perceive the task as a series of decisions that
cumulatively construct the graph.

However, while these methods present useful modelling tech-
niques, they operate under the assumption of a canonical ordering
for the nodes and edges. This is problematic because it conflicts
with the inherent permutation invariance of graphs, an attribute
that these models struggle to accommodate.

2.1 Graph Generation and Generative Models

Deep graph generative models have seen a rich development and
can be broadly categorized into five types: Autoregressive Models,

Sajad Ramezani and Soroor Motie

Variational Autoencoders (VAEs), Normalizing Flows, Generative
Adversarial Networks (GANs), and Diffusion Models. Here is a brief
description of each:

o Autoregressive Models: Autoregressive models, like GraphRNN
[30], generate graphs in a sequential manner. The genera-
tion process assumes a predefined ordering of the nodes and
edges, and each element is generated conditioning on the
previously generated ones. Although this method is highly
effective, the assumption of canonical ordering is a limitation
given that graphs are inherently permutation-invariant.

e Variational Autoencoders (VAEs): Graph VAEs [16] encode
the input graph into a continuous latent space, and then de-
code the latent representation to generate the output graph.
The encoding-decoding mechanism allows the model to learn
complex patterns and distributions from the input data. How-
ever, capturing the variability in graph size and structure
can be a challenge for these models.

e Normalizing Flows: These models map a simple probabil-
ity distribution to a complex one through a series of in-
vertible transformations, enabling exact computation of log-
likelihood and exact sampling. In the context of graph gener-
ation, normalizing flows provide an appealing framework to
model the complex distribution of graphs, with models like
GraphAF [22] and GraphNVP [18] being notable examples.

e Generative Adversarial Networks (GANSs) [11]: GANs for
graph generation, such as GraphGAN [26] and MolGAN
[5], use a game-theoretic setup where a generator and dis-
criminator are trained simultaneously. The generator creates
graphs aiming to fool the discriminator, while the discrimi-
nator learns to distinguish real graphs from generated ones.
This adversarial process helps in generating high-quality
graphs, but training GANSs can often be unstable.

o Diffusion Models: These are a newer category of models
where a data distribution is modelled as a reverse diffusion
process starting from a simple prior. These models, although
not yet as common in the context of graph generation, show
great promise due to their ability to generate high-quality
samples and compute likelihoods.Vignac et al. 25 discrete
diffusion process to generate realistic graphs. It has further
constrained by being permutation equivarience.

The above categorization is based on Zhu et al. 31 algorith-
mic taxonomy for graph generation, which bears similarity to our
framework in terms of offering a unified approach to graph gener-
ation. However, our framework distinguishes itself on two major
fronts. Firstly, we approach the problem from the perspective of
self-supervised learning. We incorporate various pseudo tasks, such
as link prediction, which allow our model to learn and fine-tune
its parameters, facilitating robust and flexible representations of
the graph structures. Secondly, we provide an open-source imple-
mentation of our framework, which is aimed at fostering further
research in the field of graph generation. This implementation not
only encapsulates previous methods, thus serving as a comprehen-
sive tool for graph generation tasks, but also provides researchers
with a platform to enhance and build upon existing techniques,
thereby accelerating the development of novel and more efficient
graph generative models.

UGGS: A Unified Graph Generation Framework Based on Self-Supervised Learning

2.2 Contribution

A category of proposed graph generation models is based on Encod-
ing graphs into embedding space. While using various approaches,
these approaches can be formed into a unified framework to be used
together and compared effectively as described by [31]. There has
not been a dedicated framework to enhance and facilitate the task
of graph generation. This work proposes an implemented frame-
work with decoupled modules such as Encoder, Self-Supervised
Tasks, Decoding, and Evaluation. The modules will allow for an
easier extension of these works and better benchmarking. However,
latter case is not the primary concern of this work. Since evaluating
generative models is a challenging task in the case of graph genera-
tion, it is substantially harder because of both the discreteness and
incapability of visual inspection. We show that the proposed model
accomplishes comparable results and sometimes beats state-of-the-
art in the general graph generation tasks with fewer parameters.
We have also emphasized the importance of decoding strategy in
graph generation and introduced a similarity filter based on graph
embedding to omit poor-quality generated graphs. We further jus-
tify this approach with a perturbation graph experiment . Finally,
we introduce the developed tool based on the proposed framework,
which includes all the modules and models discussed in this work
while being compatible with several other "ML for graphs" tools
developed in recent years. This tool also includes the necessary
components for developing the graph generation model, including
datasets, evaluation methods, and interpretation tools. We hope this
tool can enhance and facilitate the work of other researchers in this
field. In the end, we discuss the implication and further research
direction and propose several extensions of this work.

To sum up, we try to overcome the shortcomings of previous
works, particularly through the following contributions:

e Proposing a unified framework dedicated to graph genera-
tion task achieving state-of-the-art graph generation results
compared to previous models w.r.t the number of parameters

e Proposing and applying a decoding strategy to refine gener-
ated graphs using graph embedding distance

e Ensuring reproducibility by offering an extensive tool for
implementing the presented framework in a more compre-
hensive way

o Clarifying the evaluation metric of maximum mean discrep-
ancy by offering an interpretable evaluation measure

3 APPROACH
3.1 UGGS: Framework Overview

In this work, we propose a novel framework for graph generation,
broken down into two essential components. First, we utilize a
guiding model, which is capable of comprehending the properties
and distribution of the training graph data for graph generation pur-
poses. An example of such a guiding model can be a link prediction
model. Second, we define a graph generation strategy, employing
the guiding model to generate graphs with desired properties.
Our proposed framework for graph generation employs graph
neural networks to capture node and graph-level representation.

MLG’23, August 2023, Long Beach, CA, USA

tasks on graphs. The overall architecture of this framework is de-
picted in figure 1. Initially, the encoder captures the crucial features
of the training graph distribution within an embedding space. The
resultant node and graph-level representations are then fed into
several self-supervised heads for further tuning of representation
and model parameters. As demonstrated by previous studies, self-
supervised methods have proven highly effective in encapsulating
useful features within the embedding space, leading to a more
robust representation.

Task Specific

Task Heads Loss Functions

Training
Graphs Embedding

Space (g0, Ly(gg label)

Graph Neural Graph Classification Classification Loss

s e Total Loss

= Functions

. 7] L(yy_label) Ay
CAN (&) Node Classification @ritmie 0,01,02.03)
| -

f(hy,hip,) Ly(v,y_label)
Link Prediction Prediction Loss

Figure 1: UGGS Framework with three pseudo task

3.2 Training

3.2.1 Encoder. First, we employ an encoder to capture the distribu-
tion of the training data. The encoder’s role is to learn a mapping
from nodes to a latent space, and it can also incorporate a readout
function to embed the entire graph into an embedding space. For
this purpose, we utilize a graph neural network. Our framework is
versatile and can work with any other model that essentially learns
this aforementioned mapping to capture both the node embeddings
and graph embeddings.

3.2.2 Pseudo-heads. In order to train the parameters, we introduce
pseudo-tasks. These tasks allow for the simultaneous training of
both the encoder model and the task heads. The task heads are
responsible for fine-tuning the parameters and learning a mapping
from the embedding space produced by the encoder to specific
tasks, such as link prediction, which proves beneficial for graph
generation.

3.2.3 Training Procedure. In the training phase, the GNN encoder
derives node representations of the training graphs through mes-
sage passing and aggregation among nodes. A variety of GNN
architectures proposed in the literature may be employed. In our
study, we examined three of the most prevalent approaches in
graph generation: GraphSage [12], GAT [24], and GIN [28]. To
further enhance the parameters, we suggest the incorporation of
self-supervised heads. Each head is a parameterized model, such as
a neural network, tasked with pretext (pseudo) tasks. The underly-
ing intuition is that these tasks will guide the parameters of both
the GNN encoder () and the self-supervised heads (¢) towards
greater robustness and superior generalization.

Each self-supervised head may necessitate its own preprocessing
and unique loss function. For example, the link prediction head
selects pairs of positive and negative nodes. Positive node pairs
are adjacent in the training graph, whereas negative pairs are not
adjacent in the original training graph. These heads may also intro-

These representations are subsequently refined through self-supervised ~ duce hyperparameters to the overall framework. For instance, in

MLG’23, August 2023, Long Beach, CA, USA

the case of link prediction, the ratio of negative to positive pairs
to be sampled must be defined. These self-supervised heads uti-
lize the node embeddings produced by the GNN encoder as input,
as depicted in Figure 1. Graph-level tasks can also be introduced
with the aid of the read-out function (GIN). The loss functions of
self-supervised heads need to be combined, which can be achieved
through a simple linear combination.

The framework comprises two sets of parameters: 1) 6, which rep-
resents GNN encoder parameters, and 2) @, denoting self-supervised
heads parameters. This decoupling permits the use of pre-trained
GNN encoders such as GRAN, addressing a limitation present in
previous graph generation architectures. The GNN encoder and
self-supervised heads can be trained either jointly (as demonstrated
in our experiments) or separately.

For instance, in our algorithm, we employed link prediction as
a pseudo-task. The loss function for this task is defined through
the sampling of positive edges (edges that exist in the graph) and
negative edges (edges that do not exist in the graph). Another com-
ponent of the loss function serves as a regularizer for the learned
embeddings. In this work, we adopt the same loss function as
[12]Moreover, in the results section, we explore models that in-
corporate degree prediction as an additional task (represented by
UGGS-2), showcasing the flexibility and adaptability of our unified
graph generation framework.

3.3 Inference Phase

The problem of generating a graph from a learned model, a process
we refer to as ’decoding’ in the context of generation, this problem
has seen relatively limited exploration in the literature despite its
importance. In contrast, the significant volume of research and
methodologies dedicated to the problem of decoding in the realm of
natural language generation has motivated us to establish a similar
structure within the context of graph generation. This leads us
to pose the question: how critical is a decoding strategy to the
performance of a graph generation model?

One intuitive decoding strategy, as depicted in the figure 2 in-
volves the generation of a graph with n vertices: initially, we sample
n-node embeddings from the embedding space. Utilizing the Link
Prediction head, we estimate the probability of adjacency between
each pair of nodes. Subsequently, through thresholding, we gen-
erate the adjacency matrix for the graph. In our experiments, we
employed a uniform sampling approach from the node embedding
space for generating graphs. However, our framework allows for
the possibility of incorporating a learned sampling module in future
work, providing flexibility in the sampling strategy. as

The second decoding strategy employs a similarity measure with
a reference set, a group of graphs to which we desire our generated
graphs to bear similarity. Initially, we embed the generated graphs
into an alternative embedding space, employing recently developed
graph embedding approaches. Then, using cosine similarity in the
embedding space, we search for generated graphs that show the
greatest similarity to the reference set (figure). As demonstrated in
the [Results Section], the choice of decoding strategy is consequen-
tial, and this research area has been somewhat under-explored in
the literature. There is scope for a multitude of more sophisticated
approaches to enhance the quality of generated graphs.

Sajad Ramezani and Soroor Motie

Algorithm 1: Training Algorithm for the proposed frame-
work with GraphSage as the encoder and link prediction as
the only pseudo task
Input: Graph dataset D = {g|g is G(V,E, X)},
V: vertex set, E: edge set, X:
node features,
k: graph neural network depth,
o: non linear function,
AGGREGATE: differentiable aggregator function,
N: neighbourhood function,
d: embedding dimension,
f(u,v): link prediction neural network u, v: edges
Output: Vector representation z, for all vertices and edge
probability p, , for G in D do
// Embedding generation
n = G.X,
for k do
forov inG.V do
L KK = AGGREGATE({h,k-1,Yu in N(v)})

N (o)
hlj =o(Wg = concat(hlzf_l, th\I(v)))
KK = KK /norm(kK), vo
2o = Ko
// Link prediction
P = empty matrix
G = Ground Truth matrix
for u, v in SamplePositiveEdge(g) do
L Plu,0] = f(zu, z0)
Glu,v] =1
for u, v in SampleNegativeEdge(g) do
L Plu,0] = f(zu, 20)
Glu,v] =0
loss = BCE,,,,;,(Z) + BCE(P, G)

4 EXPERIMENTS

We evaluated our proposed model on a total of four distinct datasets—two

of which are synthetic and the other two originating from protein
and 3D object domains respectively. This diverse selection was
intentional, serving to demonstrate the broad applicability and ver-
satility of our model across varying use-cases. The specifics of these
datasets are elaborated upon in Table 1.

Our model’s performance was benchmarked against a selection
of alternative models from existing literature, as outlined in Table 3.
The evaluation metrics utilized to assess the quality of the generated
graphs include degree distribution, clustering coefficient, orbits,
and spectral characteristics. These metrics were compared using
the Maximum Mean Discrepancy (MMD) method. MMD quantifies
the dissimilarity between two probability distributions. For our
purpose, we use the squared MMD to compare sets of samples from
distributions p and q. It can be derived as follows:

MMD?(pllq) = Ex,y~p [K(x,)]+Ex, y~q [k (%, 1)1 -2Bx~p,y~q [k (x, y)]

UGGS: A Unified Graph Generation Framework Based on Self-Supervised Learning

Training Embedding Embedding " Generated
Decodin;
Graphs Space Sampling g Graphs

Decoder

Conditions Link Prediction

Vanilla Decoder Magnified
=

.
Constructa Prune Edges with

complete Gr .
Complete Graph LP Modle
v

Figure 2: Proposed Vanilla Graph Generation Strategy

Initial Generated Final Generated

raphs Embedding S]:zia;? Filtering raphs
L Similarity s
Embedding s Filtering

Reference
Graphs

Figure 3: Proposed Filtering Graph Generation Strategy

Table 1: Dataset statistics

Iﬁ;ﬁzt Size | Vertecies Type Description

2D Grid | 100 | 100<V<400 | Synthetic 2d shaped grid
tree with nodes of

Lobster | 100 | 10<V<100 | Synthetic at most 2

nodes from

the main branch

Protein | 918 | 100<V<500 | Real-world [6]

3D Mesh | 41 V<5000 Real-world [19]

The choice of using Maximum Mean Discrepancy (MMD) as an
evaluation measure is motivated by its widespread adoption in pre-
vious works and the inherent challenge of assessing the quality of
generative graphs. The MMD measure, coupled with a set of graph
statistics, provides an efficient approach to evaluate the quality of
generated graphs.

5 RESULTS AND DISCUSSION

Across most datasets, our model achieved state-of-the-art results,
while maintaining a significantly smaller number of parameters and
reduced training time. For instance, in the case of the protein dataset,

MLG’23, August 2023, Long Beach, CA, USA

our model used only 259k parameters compared to 1545k in GRAN
and 392k in GraphRNN, while still generating more representative
protein graphs.

Moreover, the results from the 2D grid data clearly demonstrate
the effectiveness of incorporating self-supervised tasks. When we
compare our original model (UGGS-1) with the same model en-
hanced with a pseudo task of degree prediction (UGGS-2), we find a
noticeable improvement. This indicates that incorporating relevant
pseudo tasks can effectively boost model performance.

However, it’s important to be mindful while designing these
pseudo tasks, as they may not always contribute to model improve-
ment. This is exemplified in the case of the protein dataset, where
the addition of a pseudo task did not result in enhanced perfor-
mance.

Lastly, the 3D mesh dataset showcases the scalability of our
framework. GraphRNN-based models failed to process this dataset
and returned an out-of-memory error, whereas our model success-
fully managed the task and produced competitive results. These
findings underline the efficiency and robustness of our proposed
framework for graph generation, even in demanding and large-scale
scenarios.

We compared our model to the following models from the litera-
ture Classical Models:

e Erdos-Rényi [8]: This is a simple random graph model, where
each edge is included in the graph independently with a
given probability. It’s useful for representing unstructured
randomness but may not capture complex patterns or prop-
erties seen in real-world graphs.

e Barabasi-Albert [3]: This model generates random scale-free
networks using a preferential attachment mechanism, where
new nodes prefer to attach to existing nodes with high degree.
It’s often used to mimic the growth of real-world networks.

e MMSB (Stochastic Block Model) [2]: This probabilistic model
generates graphs by partitioning nodes into latent blocks or
communities, and then connecting nodes based on the block
membership. It’s often used for community detection and
network analysis.

o GraphVAE (Graph Variational Autoencoder) [16]: GraphVAE
learns a probabilistic mapping of graphs into a continuous la-
tent space and can generate new graphs by decoding random
points in this space. It’s capable of capturing the underlying
distribution of the graph data.

e GraphRNN [30]: GraphRNN formulates the graph generation
process as a sequence generation problem, and uses recurrent
neural networks to generate nodes and edges sequentially.
It can handle graphs of arbitrary size and complexity.

e GRAN (Graph Recurrent Attention Network) [17]: GRAN
applies an autoregressive approach to graph generation, us-
ing blocks of adjacency matrix and calculating probabilities
with attention weights. It can handle complex patterns in
graph data.

o BiGG (Scalable Deep Generative Modeling for Sparse Graphs)
[4]: BiGG is an autoregressive model that leverages the spar-
sity of real-world graphs to efficiently generate new graphs.
It avoids generating full adjacency matrices and can scale to

MLG’23, August 2023, Long Beach, CA, USA

Table 2: Comparison of our models to other graph generative
models using MMD in 2D Grid dataset.

2D Grid
Model Name | Degree Cluster Coeff Orbit Spectral
Erdos-Renyi 0.79 2.00 1.08 0.68
B-A 1.86 0 0.72 NR
MMSB 1.88 0.13 1.23 NR
GraphVAE 7.07e-2 7.33e-2 0.12 1.44e-2
GraphRNN-S 0.12 3.73e-2 0.18 0.19
GraphRNN | 1.12e-2 7.33e-5 1.03e-3 1.18e-2
GRAN 8.23e-4 3.79e-5 1.59e-3 1.62e-2
GDSS 0.11 5.06e-3 7.00e-2 NR
BiGG 4.12e-4 7.25e-5 5.10e-4 9.28e-3
UGGS-1 3.70e-4 0.0 5.60e-4 1.20e-2
UGGS-2 1.64e-4 0.0 2.62e-4 6.30e-3

Table 3: Comparison of our models to other graph generative
models using MMD in Protein dataset.

Protein
Model Name | Degree Cluster Coeff Orbit Spectral
Erdos-Renyi | 5.64e-2 1.00 1.54 9.13e-2
B-A 1.40 1.70 0.92 NR
MMSB 0.23 0.49 0.77 NR
GraphVAE 0.48 7.14e-2 0.74 0.11
GraphRNN-S | 4.02e-2 4.7%e-2 0.23 0.21
GraphRNN | 1.06e-2 0.14 0.88 1.88e-2
GRAN 1.98e-2 4.86e-2 0.13 5.13e-3
BiGG 9.51e-4 2.25e-2 2.26e-2 4.51e-3
UGGS-1 6.02e-4 5.80e-2 8.70e-3 1.20e-2
UGGS-2 4.06e-3 8.82e-2 4.03e-3 8.31e-3

significantly larger graphs compared to other deep autore-
gressive graph generative models.

o tree-gen [23]: Using a tree decomposition reduces the graph
generation problem to multiple tree generation. It also pro-
poses a permutation invariant model for tree generation.

e GDSS (Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations) [15]: GDSS uses
a novel score matching objective and a new solver for the
system of SDEs to efficiently sample from the reverse diffu-
sion process. It has been demonstrated to generate molecules
close to the training distribution without violating the chem-
ical valency rule, showing the effectiveness of the system of
SDEs in modeling the node-edge relationships.

e JT-VAE [14]: A model based on decomposing the graph to
junction trees and employing an encoder network for both
tree and graph and for a generation it assembles junction
trees sampled from embedding space.

5.1 Decoding Result

As shown in the table 5, by employing a more sophisticated decod-
ing scheme that filters generated graphs based on their embedding
distance, we can significantly enhance the quality of the generated

Sajad Ramezani and Soroor Motie

Table 4: Comparison of our models to other graph generative
models using MMD in Lobster dataset

Lobster
Model Name | Degree Cluster Coeff ~ Orbit Spectral
GraphVAE 2.09e-2 7.97e-2 1.43e-2 3.94e-2
GraphRNN-S | 3.48e-3 4.30e-2 2.48e-4 6.72e-2
GraphRNN | 9.26e-5 0.0 2.19e-5 1.14e-2
GRAN 3.73e-2 0.0 7.67e-4 2.71e-2
JT-VAE 0.163 0.0 5.86e-3 8.27e-2
Tree-Gen 2.94e-4 0.0 2.23e-5 1.88e-2
BiGG 2.94e-5 0.21 1.51e-5 8.57e-3
UGGS-1 7.53e-4 1.86e-2 0.12 1.91e-2

Table 5: Comparison of our models to other graph generative
models using MMD in 3D Mesh dataset

3D Mesh
Model Name | Degree Cluster Coeff ~ Orbit Spectral
Erdos-Renyi 0.31 1.22 1.27 4.26e-2
GraphVAE OOM OOM OOM OOM
GraphRNN-S | OOM OOM OOM OOM
GraphRNN | OOM OOM OOM OOM
GRAN 1.75e-2 0.51 0.21 7.45e-3
BiGG 2.56e-3 0.21 0.21 3.40e-3
UGGS-1 1.78e-2 0.21 7.90e-2 9.30e-3
UGGS-2 1.38e-2 0.97 6.00e-2 4.7e-2

graphs. To validate the hypothesis that embedding distance indeed
captures graph similarity, we conducted a perturbation analysis
using two perturbation methods: edge rewire and node addition.

In the edge rewire method, we changed the source and destina-
tion of an edge with a certain probability, essentially rewiring the
connections. In the node addition method, we added a new node
to the graph and connected it to some existing nodes with a given
probability.

We then increased the perturbation probability and sorted the
graphs based on the amount of perturbation. Simultaneously, we
also sorted the graphs based on their embedding distance from the
initial unperturbed graph. We then plotted their Spearman correla-
tion to investigate whether the ranking returned by the embedding
distance aligns with the actual amount of perturbation.The result
is depicted in figure 4. This analysis is essential as it provides the
foundation for our distance-based decoding strategy.

In this experiment, we used two graph embedding methods,
FEATHER [21] and Graph Isomorphism Network [28], for compari-
son. The results, as illustrated in the corresponding figure, confirm
the effectiveness of our proposed decoding strategy, suggesting
that embedding distance is a useful measure for graph similarity.

5.2 Interpretable Measure

With the recent advancements in deep graph generative models,
there is a need for explainable methods to evaluate and interpret
the produced graphs. While previous studies have predominantly
relied on visual inspections, statistical measures of select graph

UGGS: A Unified Graph Generation Framework Based on Self-Supervised Learning

MLG’23, August 2023, Long Beach, CA, USA

°| mmm FEATHER
= GIN

spearman corr

Grid-Rewire Lobster-Rewire 3D-Rewire

3D-AddNode

Protein-Rewire Protein-AddNode Grid-AddNode Lobster-AddNode

Figure 4: Comparison graph embeddings for distance-based decoding

Table 6: Comparison of our model’s decoding strategy using MMD in 2D Grid, Protein, and Lobster datasets.

Model Name Vanilla Decoding Strategy Distance Based Decoding Strategy
Degree Cluster Coef ~ Orbit Spectral | Degree Cluster Coef =~ Orbit Spectral
Grid 8.27e-4 0.0 1.25e-3 2.22e-3 | 1.86e-5 0.0 4.50e-5 1.6le-2
Protein 2.09e-3 5.63e-2 5.91e-2 9.30e-3 | 6.28e-4 7.15e-2 4.11e-4 5.92e-3
Lobster 4.35e-3 0.0 2.00e-2 1.67e-2 | 7.45e-4 0.0 6.28e-3 8.70e-3

characteristics, and embedding-based evaluation metrics, this sec-
tion focuses on introducing an interpretable evaluation measure for
a typical graph comparison metric, Maximum Mean Discrepancy
(MMD).

To elaborate, discussing MMD in isolation does not provide a
comprehensive understanding of model performance unless it’s
compared with other models. Additionally, there is no clear under-
standing of the effect of a unit change in the MMD measure; for
instance, the difference between an MMD of 0.01 and an MMD of
0.02. To address this issue, we express the MMD measure relative to
the percentage of perturbation, such as edge or node perturbation,
in a set of generated graphs. Therefore, every reported MMD is
paired with a perturbation value, resulting in a more interpretable
and accountable metric.

6 DEVELOPED FRAMEWORK AND CODEBASE

In an effort to propel further research and development in the
field of graph generation, we have implemented a comprehensive
framework that takes a modular and user-friendly approach. The

framework is meticulously designed with simplicity and flexibility
in mind, rendering it an accessible and valuable tool for researchers
and practitioners alike. Our implementation encapsulates the en-
tire graph generation process, from input to output. The concise-
ness and comprehensibility of our implementation are illustrated
through an end-to-end example provided in the appendix.

Our framework is also designed to be highly compatible with
a variety of popular graph deep learning libraries, including DGL
[27] and PyTorch Geometric [10]. This feature enhances its flexibil-
ity and broadens its potential applications, as it can leverage the
strengths and capabilities of these libraries to cater to a variety of
graph-related tasks.

Moreover, we have open-sourced our framework and warmly
welcome contributions from the broader research community. We
believe that this collaborative approach will fuel innovation and ac-
celerate progress in the domain of graph generation. By making our
work openly accessible, we aim to catalyze further advancements
in this exciting field and facilitate the discovery of novel solutions
to complex graph generation problems.

MLG’23, August 2023, Long Beach, CA, USA

plot clustering against alpha rewire

(0.0686, 0.16857385)
0.05
000

0o 01 02 03 04 [
Edge Perturbation

plot 4orbits against alpha rewire

00014

0.0012

00010

0.0008

00006

(0.000535 , 0.0112375)
0.0008

MMD between Original and Perturbed Grids

0.0002

0.0000

00025 0.0050 0.0075 00100 00125 00150 00175 0.0200
Edge Perturbation

Sajad Ramezani and Soroor Motie

plot degree against alpha rewire

00020

0.0015

00010

MMD between Original and Perturbed Grids.

00005

f/ (0.0005, 0.00757818)
00000

0.0025 0.0050 00075 0.0100 00125 00150 00175 00200
Edge Perturbation

plot spectral against alpha rewire

0.040

0035

2030

0.025

0020

0015

MMD between Original and Perturbed Grids

(0.0141,0.07675252)

0010

0.005

00 oL 02 03
Edge Perturbation

Figure 5: Proposed interpretable measure for four different criteria. The horizontal axis represents the percentage of perturbation
in the edges of the training graphs, for example [0%,20%,...,100%], and the vertical axis represents the MMD between perturbed
and reference for 100 grids. The highlighted points also represent the MMD of the proposed framework and the corresponding
percentage of perturbation as the score in proposed measure. For example, suppose the model reports an MMD value of 0.0005
for the degree distribution. In that case, it is equivalent to perturbing about 0.75% of the edges of a reference graphs or, in other

words, there is a 0.75% deviation from the training graphs.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced a Unified Framework for Graph Gener-
ation based on Self-supervised Learning (UGGS), that encapsulates
and expands upon existing methodologies. Our approach lever-
ages the concept of pseudo-tasks to facilitate robust and efficient
graph generation, demonstrating competitive performance met-
rics in terms of model parameters and training time, when bench-
marked against state-of-the-art alternatives. Additionally, we shed
light on the often-underestimated importance of decoding strategy,
proposing a more sophisticated approach that is based on distance
measures. Through rigorous testing and empirical analysis, we
showcased the effectiveness of this approach, contributing valuable

insights to the field.

Looking ahead, we identify several promising avenues for future
research. First, our work emphasizes the significance of the decod-
ing strategy in the graph generation process. As such, the devel-
opment of more sophisticated decoding methodologies could yield
significant improvements in model performance and the quality
of generated graphs. Moreover, evaluating the quality and validity
of generated graphs remains a nontrivial task. While we proposed
an alternative, interpretable measure to MMD in this work, it is
clear that more research effort is needed in this area to develop
comprehensive, interpretable, and robust evaluation metrics. By
advancing in these directions, we believe the field can continue to
make substantial strides toward more powerful and efficient graph
generation methodologies.

REFERENCES

[1] Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. 2022. Spanning Tree-
based Graph Generation for Molecules. In International Conference on Learning

UGGS: A Unified Graph Generation Framework Based on Self-Supervised Learning

[2

[

=
=2

[11]

[12

[13]

[14

[15]

(16

[17]

(18

[23]

™
=t

[25]

Representations. https://openreview.net/forum?id=w60btE_8T2m

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. 2008. Mixed member-
ship stochastic blockmodels. Advances in neural information processing systems
21 (2008).

Réka Albert and Albert-Laszlo Barabasi. 2002. Statistical mechanics of complex
networks. Rev. Mod. Phys. 74 (Jan 2002), 47-97. Issue 1. https://doi.org/10.1103/
RevModPhys.74.47

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. 2020. Scalable
Deep Generative Modeling for Sparse Graphs. arXiv preprint arXiv:2006.15502
(2020).

Nicola De Cao and Thomas Kipf. 2018. MolGAN: An implicit generative model
for small molecular graphs. ICML 2018 workshop on Theoretical Foundations and
Applications of Deep Generative Models (2018).

Paul D Dobson and Andrew J Doig. 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330, 4 (2003),
771-783.

Yasha Ektefaie, George Dasoulas, Ayush Noori, Maha Farhat, and Marinka Zitnik.
2023. Multimodal learning with graphs. Nature Machine Intelligence (2023), 1-11.

P Erdos and A Enyi. 1959. On random graphs I. Publicationes Mathematicae
(Debrecen) 6 (1959), 290-297.

Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R
Rabiee. 2021. Deep graph generators: A survey. IEEE Access 9 (2021), 106675—
106702.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversar-
ial Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPS.

José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. 2020. Drug dis-
covery with explainable artificial intelligence. Nature Machine Intelligence 2, 10
(2020), 573-584.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction tree varia-
tional autoencoder for molecular graph generation. In International conference
on machine learning. PMLR, 2323-2332.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. 2022. Score-based generative model-
ing of graphs via the system of stochastic differential equations. In International
Conference on Machine Learning. PMLR, 10362-10383.

Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamil-
ton, David Duvenaud, Raquel Urtasun, and Richard Zemel. 2019. Efficient Graph
Generation with Graph Recurrent Attention Networks. In NeurIPS.

Kaushalya Madhawa, Katsuhiko Ishiguro, Kosuke Nakago, and Motoki Abe. 2020.
Graph{NVP}: an Invertible Flow-based Model for Generating Molecular Graphs.
https://openreview.net/forum?id=ryxQ6T4YwB

Marion Neumann, Plinio Moreno, Laura Antanas, Roman Garnett, and Kristian
Kersting. 2013. Graph kernels for object category prediction in task-dependent
robot grasping. In Online proceedings of the eleventh workshop on mining and
learning with graphs. 0-6.

Mark Newman. 2018. Networks (2 ed.). Oxford University Press, London, England.

Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on Graphs:
Birds of a Feather, from Statistical Descriptors to Parametric Models. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM °20). ACM, 1325-1334.

Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and
Jian Tang. 2020. GraphAF: a Flow-based Autoregressive Model for Molecular
Graph Generation. In International Conference on Learning Representations. https:
//openreview.net/forum?id=S1esMkHYPr

Hamed Shirzad, Hossein Hajimirsadeghi, Amir H. Abdi, and Greg Mori. 2022.
TD-GEN: Graph Generation Using Tree Decomposition. In Proceedings of The
25th International Conference on Artificial Intelligence and Statistics (Proceedings
of Machine Learning Research, Vol. 151), Gustau Camps-Valls, Francisco J. R. Ruiz,
and Isabel Valera (Eds.). PMLR, 5518-5537. https://proceedings.mlr.press/v151/
shirzad22a.html

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=rJXMpikCZ
Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,
and Pascal Frossard. 2023. DiGress: Discrete Denoising diffusion for graph
generation. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=UaAD-Nu86WX

MLG’23, August 2023, Long Beach, CA, USA

[26] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. Graphgan: Graph representation learning
with generative adversarial nets. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[29] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018.
Graph convolutional policy network for goal-directed molecular graph genera-
tion. Advances in neural information processing systems 31 (2018).

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.
Graphrnn: Generating realistic graphs with deep auto-regressive models. In
International conference on machine learning. PMLR, 5708-5717.

Yanqiao Zhu, Yuangi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and
Shu Wu. 2022. A Survey on Deep Graph Generation: Methods and Applications.
In The First Learning on Graphs Conference. https://openreview.net/forum?id=
Im8G9IR1boQi

[27

[28

[30

[31

A LEARNED REPRESENTATION

figure 6 depicts the comparison of the learned embeddings between
the reference and generated graphs, and those of the randomly
generated graphs. The results demonstrate that randomly gener-
ated graphs cannot be compared to the graphs generated using
the proposed framework, as evidenced by the significant distance
between their embeddings.

B CODE SNIPPET

import torch

import numpy as np

from preprocess.dataprovider import GranDataProvider
from preprocess.taskdataprovider import LPDataProvider,
NodeDegreeDataProvider

from model.gnn_model import GraphGIN

from model.prediction_model import MLPPredictor

from model.loss import compute_loss

from train.lp_train import VanillalPTrain

from decode.decode import GraphSamplingDecoder

from evaluation.mmd import evaluate_mmd

CONFIGS

device = torch.device("cuda:@" if torch.cuda.is_available()
else "cpu")

GRAPH_TYPE = "lobster"

max_n = 1000

dim = 128

num_class = 50

PREPARE DATA

graph_provider = GranDataProvider (GRAPH_TYPE)
task_provider = LPDataProvider(feat="onehot", max_n=max_n,
neg_over_sample=8)

n_provider = NodeDegreeDataProvider(num_class)

#i## Create Models

model = GraphGIN(max_n, dim, "mean")

pred = MLPPredictor(dim)

ts = VanillalPTrain(model,

pred,graph_provider, task_provider, compute_loss,
save_dir="Exp/experiemt1/",

)

https://openreview.net/forum?id=w60btE_8T2m
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://openreview.net/forum?id=ryxQ6T4YwB
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://proceedings.mlr.press/v151/shirzad22a.html
https://proceedings.mlr.press/v151/shirzad22a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Im8G9R1boQi
https://openreview.net/forum?id=Im8G9R1boQi

MLG’23, August 2023, Long Beach, CA, USA Sajad Ramezani and Soroor Motie

generated graphs against true grids embedding via PCA 2 component

0 @ random

e generated \
@ Tue grid

—2 4

—4

£ 4

5 & 7 B 9 10

generated graphs against true grids embedding via PCA 2 component

@ generated
@ Tue grid L

0125

0.100

0075

0.050

0.025 o

0000

—0.025

—0.050 4

T T
-0.4 =03 =02 -0.1 00 01 02 03 04

Figure 6: Comparison of the learned embeddings between the generated and reference graph datasets using principal component
analysis (PCA). The embeddings of 20 graphs generated using the proposed framework were compared to the representations
of 100 training 2D Grids. The results show that a significant proportion of the generated graphs are in close proximity to the
reference graph embeddings line.

UGGS: A Unified Graph Generation Framework Based on Self-Supervised Learning

model, pred = ts(num_epochs=3000, save_step=50)
Generation

graph_provider.set_mode("train")

graph_decoder = GraphSamplingDecoder (
graph_provider, task_provider,

gnn_model=model,

prediction_model=pred,

plot=False,

MLG’23, August 2023, Long Beach, CA, USA

num_gen=20,

)

gen, time_dif = graph_decoder()
graph_provider.set_mode("test")

(

mmd_degree_test,mmd_clustering_test,mmd_4orbits_test,mmd_spectral._

) = evaluate_mmd(graph_provider, gen, degree_only=False)

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Generation and Generative Models
	2.2 Contribution

	3 Approach
	3.1 UGGS: Framework Overview
	3.2 Training
	3.3 Inference Phase

	4 Experiments
	5 Results and Discussion
	5.1 Decoding Result
	5.2 Interpretable Measure

	6 Developed Framework and Codebase
	7 Conclusion and Future Work
	References
	A Learned Representation
	B Code Snippet

