
GEANN: Scalable Graph Augmentations for
Multi-Horizon Time Series Forecasting

Sitan Yang
Forecasting Science, Amazon

New York, NY, USA

sitanyan@amazon.com

Malcolm Wolff
Forecasting Science, Amazon

New York, NY, USA

wolfmalc@amazon.com

Shankar Ramasubramanian
Forecasting Science, Amazon

New York, NY, USA

sramasub@amazon.com

Vincent Quenneville-Belair
Forecasting Science, Amazon

New York, NY, USA

quennv@amazon.com

Ronak Mehta*

University of Washington

Seattle, WA, USA

ronakdm@uw.edu

Michael W. Mahoney
Forecasting Science, Amazon

New York, NY, USA

zmahmich@amazon.com

ABSTRACT

Encoder-decoder deep neural networks have been increasingly

studied for multi-horizon time series forecasting, especially in

real-world applications. However, to forecast accurately, these

sophisticated neural forecasters typically rely on a large num-

ber of time series examples with substantial history. A rapidly

growing topic of interest is forecasting time series which lack

sufficient historical data—often referred to as the “cold start”

problem. In this paper, we introduce a novel yet simple method

to address this problem by leveraging graph neural networks

(GNNs) as a data augmentation for enhancing the encoder

used by such forecasters. These GNN-based features can cap-

ture complex inter-series relationships, and their generation

process can be optimized end-to-end with the forecasting task.

We show that our architecture can use either data-driven or

domain knowledge-defined graphs, scaling to incorporate in-

formation from multiple very large graphs with millions of

nodes. In our target application of demand forecasting for a

large e-commerce retailer, we demonstrate on both a small

*Work performed during an internship at Amazon

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

MLG ’23, August 15th, 2023, Long Beach CA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

dataset of 100K products and a large dataset with over 2 mil-

lion products that our method improves overall performance

over competitive baseline models. More importantly, we show

that it brings substantially more gains to “cold start” products

such as those newly launched or recently out-of-stock.

CCS CONCEPTS

• Deep Neural Networks → Time Series Forecasting; •

Graph Neural Networks→ Graph Data Augmentation.

KEYWORDS

Time Series Forecasting, Graph Data Augmentation, Graph

Neural Networks, Scalability

ACM Reference Format:

Sitan Yang, Malcolm Wolff, Shankar Ramasubramanian, Vincent Quenneville-

Belair, Ronak Mehta, and Michael W. Mahoney. 2023. GEANN: Scalable

Graph Augmentations for Multi-Horizon Time Series Forecasting. In

MLG ’23: 19th KDD Workshop on Mining and Learning from Graphs,

August 15th, 2023, Long Beach CA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Recent years have shown a growing interest in using deep neu-

ral networks (DNNs) for multi-horizon time series forecasting

problems [2, 23, 24, 27, 38]. This is due to their flexibility of

consuming various types of inputs and to their large model ca-

pacity to effectively learn on a huge amount of data, compared

to traditional methods. Canonical DNNs (e.g., LSTM [18] and

GRU [11]) have achieved success in many impactful real-world

applications [6, 7, 44], and most recent methods in this field

leverage Convolutional Neural Networks [e.g., 4, 9, 31, 39]

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MLG ’23, August 15th, 2023, Long Beach CA Yang, et al.

and Transformer architectures [e.g., 12, 21, 24, 25, 40] to

further improve performance.

While a primary benefit of forecasting with DNNs is the

ability to train on a large number of time series with long histo-

ries, these models also tend to rely on that scale to effectively

forecast. Difficulties can arise, however, when there is a sig-

nificant lack of historical data. This is often referred to as the

“cold start” problem, and it has garnered recent interest in time

series forecasting literature [e.g., 1, 5, 8, 28]. As many mod-

ern DNN forecasting models adopt a Seq2Seq structure [33],

which assumes that the observed time series are uncorrelated,

they tend to produce poor forecasts for “cold start” series. In

these cases, learning relational information across series may

bring additional performance gains to forecasting models.

Recent research has explored the use of Graph Neural Net-

works (GNNs) to capture complex inter-series relationships.

While graph data augmentation has been studied extensively

for general graph-based tasks such as node classification [26,

29] and edge prediction [37], its use in time series forecast-

ing remains relatively under-explored. GNNs for time series

explicitly model the relationship between observations by rep-

resenting time series as nodes and their interactions as edges

in a graph, and this has shown promising results in early

work [22, 43]. More recently, [42] introduced using a retrieval

mechanism to augment time series, achieving significant per-

formance gains for multi-horizon forecasting. However, most

major work in this field [see 45] have only used a single graph

with no more than 1,000 nodes in evaluation, proposing meth-

ods which fail to scale to many practical applications. To al-

leviate this limitation, a few recent advances have improved

the scalability of GNNs for time series forecasting by using

altered, smaller graphs [15, 19, 30] and mini-batch sampling

algorithms [10, 16].

In this paper, we expand on this literature by proposing a

novel methodology—GEANN (“Graph Ensemble Augmented

Neural Networks”)—as a practical DNN solution to the “cold

start” problem in large-scale time series forecasting. GEANN

is a parsimonious model using GNNs as a data augmentation

mechanism to enhance encoders typically used in the Seq2Seq

forecasting architectures. We apply our method to the sequence

structure of MQ-CNN from the family of MQ-Forecaster models

[12, 39], which have shown state-of-the-art performances for

time series, and especially for our target application – demand

forecasting. We leverage the forecasting quality of MQ-CNN

with graph-encoded information as an add-on component to

improve representation learning. GEANN can scale to one or

more very large graphs, which we demonstrate can lead to

substantial performance improvements. Graphs in GEANN are

predefined and static, and we can optionally assemble them

using any domain-specific knowledge. In addition, we propose

the use of pre-computed sparse graphs and their induced sub-

graphs to parallelize the GNN learning process on large and

complex datasets.

To our best knowledge, this work is the first to show the

benefit of GNNs as a data augmentation for time series fore-

casting in large scale real-world applications. We evaluate the

proposed method in our target application – demand fore-

casting for a large e-commerce retailer, using both a small

dataset consisting of ∼100K products and a large application

with over 2MM products. In both cases, we observe overall

performance improvements over competitive MQ-Forecaster

baselines. More importantly, we demonstrate that our method

brings substantially larger gains in “cold-start” scenarios, such

as new products with little to no sales history and recently

out-of-stock products with sales history being incorrectly sup-

pressed.

2 METHODS

2.1 Problem Formulation

Here and for the remainder of the paper, we denote tensors in

boldface, matrices in upper case, and vectors in lower case. Let

𝑌 ∈ R𝑁×𝑇 denote 𝑁 time series of length 𝑇 as targets, X(𝑡) ∈
R𝑁×𝑇×𝑑 a set of 𝑑 time series covariates, and 𝑋 (𝑠) ∈ R𝑁×𝑚 a

set of 𝑚 static covariates. Given a context length 𝐶 ≥ 0—i.e.

the number of past observations used for modeling from the

forecast time 𝑡—and a collection of horizons H to forecast in

the future, we wish to generate the conditional forecast given

X(𝑡)
𝑡−𝐶 :𝑡 = (𝑋

(𝑡)
𝑡−𝐶 , ..., 𝑋

(𝑡)
𝑡), 𝑌𝑡−𝐶 :𝑡 , and 𝑋 (𝑠) via the model

𝑌𝑡,H = 𝑓

(
𝑌𝑡−𝐶 :𝑡 ,X

(𝑡)
𝑡−𝐶 :𝑡 , 𝑋

(𝑠) ;𝜽
)
, (1)

where 𝜽 represents a collection of learnable parameters. To

promote scalability, current deep learning architectures often

consume the information of each observation 𝑖 independently

with the shared set of parameters 𝜽 as

𝑦𝑖,𝑡,H = 𝑓

(
𝑦𝑖,𝑡−𝐶 :𝑡 , 𝑋

(𝑡)
𝑖,𝑡−𝐶 :𝑡 , 𝑥

(𝑠)
𝑖

; 𝜽
)
. (2)

This treatment lends itself naturally to parallel computing, but

it discards relational dependencies which may exist across time

series, motivating the use of GNNs for improving equation (2)

to learn such information.

GEANN: Scalable Graph Augmentations for
Multi-Horizon Time Series Forecasting MLG ’23, August 15th, 2023, Long Beach CA

GNN layers used for time series in this paper are generally

of the form

𝑔𝑖,𝑡 = GNN𝜃 (𝐻𝑡 ; G) ,

where the inputs 𝐻𝑡 ≡ (ℎ𝑖,𝑡)𝑁𝑖=1 ∈ R
𝑁×𝑑Enc are intermediate

embeddings, G is a graph describing pairwise relationships

among observations, and the output is a graph-aware embed-

ding. However, current GNN methods typically operate by

modeling pairwise relations among observations across the en-

tire graph simultaneously, leading to poor scalability for large

graphs.

After the model is chosen, the parameters are tuned to

optimize the loss during training as

Loss(𝜽) =
∑︁
𝑖

∑︁
ℎ

∑︁
𝑡

ℓ (𝑦𝑖,𝑡,ℎ, 𝑦𝑖,𝑡,ℎ) . (3)

The quantile loss (QL) function used in our experiments is

detailed in Appendix A.

2.2 Model Architecture

Figure 1 summarizes our architecture. GEANN adopts the

encoder-decoder architecture of MQ-CNN (as detailed in [39])

with our graph ensemble module (GEM) embedded. The en-

coder uses a stack of dilated temporal convolutions to sum-

marize past targets and time-varying covariates into a se-

quence of hidden states 𝐻𝑡 ≡ (ℎ𝑖,𝑡)𝑁𝑖=1 ∈ R
𝑁×𝑑Enc . The pro-

posed GEM component encodes 𝐻𝑡 to additional hidden states

𝐺𝑡 ≡ (𝑔𝑖,𝑡)𝑁𝑖=1 ∈ R
𝑁×𝑑GNN ,

GEM𝜽 (𝐻𝑡 ;G (1) , . . . ,G (𝑅)) .

through 𝑅 individual GNN operations, each of which on sepa-

rate fixed graphs G (𝑟) . That is, for 𝑟 = 1, ..., 𝑅,

𝑔
(𝑟)
𝑖,𝑡

= GNN(𝑟)
𝜃

(
𝐻𝑡 ; G (𝑟)

)
.

The encoded states from all GNN layers are combined with

trainable weights 𝑤 (𝑟) ≥ 0,
∑𝑅
𝑟=1𝑤

(𝑟) = 1 to yield the final

output:

𝑔𝑖,𝑡 =

𝑅∑︁
𝑟=1

𝑤 (𝑟)𝑔 (𝑟)
𝑖,𝑡

∀𝑖 .

Each graph remains static, but the node embeddings are dy-

namic across all time steps 𝑡 .

Many prior methods and associated GNN libraries for graph

learning such as DGL [36] and PyTorch Geometric [14] typi-

cally require the entire node embedding set 𝐻𝑡 and the whole

graph structure G (𝑟) during each forward pass, regardless of

batch size, which is infeasible for large datasets. We instead

propose a learning algorithm for GEANN (see details in Ap-

pendix B) which applies “top-k” neighborhood sampling and

induces “𝐿-hop” subgraphs; this uses nodes in each mini-batch

as seed nodes to alleviate the scaling issue (see, e.g. [10, 16]

for related techniques). We note that the graph sparsity con-

trols the use of GPU memory during training.

The resulting embeddings 𝐺𝑡 are then combined with 𝐻𝑡 for

augmenting the representation learning process. Notice that

this process is done for each 𝑡 separately during training, and

the parameters are optimized together with the subsequent

forecasting task.

In this paper, we adopt the same decoder as in MQ-CNN,

but we note that any other decoder can be used. Formally, our

GEANN architecture is as follows:

ℎ𝑖,𝑡 = Encoder(𝑡)𝜽

(
𝑦𝑖,𝑡−𝐶 :𝑡 , 𝑋

(𝑡)
𝑖,𝑡−𝐶 :𝑡

)
,

ℎ
(𝑠)
𝑖

= Encoder(𝑠)𝜽

(
𝑥
(𝑠)
𝑖

)
,

𝐺𝑡 = GEM𝜽

(
𝐻𝑡 ;G (1) , ...,G (𝑅)

)
,

𝑦𝑖,𝑡,H = Decoder𝜽 (ℎ𝑖,𝑡 , 𝑔𝑖,𝑡 , ℎ
(𝑠)
𝑖
) .

For the GNN operation, we use 𝐿 graph convolutional network

(GCN) layers [17] for a 𝐿−hop neighborhood configuration,

but this can be easily extended to other types of graph learning

layers such as graphSAGE [16] or GAT [35].

Graph Construction. GEANN can use any predefined graph

along with optionally a specified weight for each edge. Here

we model each of 𝑁 time series in 𝐻𝑡 , 𝑡 = 1, . . . ,𝑇 as a node

and their interactions as edges, and we generally consider

two types of graphs: the data-driven graph, and the domain

knowledge-defined graph. GEANN natively supports sparse

graphs which can be efficiently stored as edge lists. For each

graph constructed, we further apply an additional “top-k” oper-

ation during training to control the GPU memory usage of each

mini-batch so that the process can be efficiently parallelized.

We construct a data-driven graph using a similarity metric

between node 𝑖 and 𝑗 . In this paper, we choose the Pearson

correlation coefficient as the metric, but other metrics can

also be used. We adopt the same method used in [42] to base

our calculations on the embedding vectors generated by a

pretrained MQ-CNN model as 𝑆Corr (𝑖, 𝑗) =
���Corr (𝐻 (0)𝑖

, 𝐻
(0)
𝑗

)��� .
Here 𝐻

(0)
𝑖

denotes the pretrained version of ℎ𝑖,𝑡 , 𝑡 = 1, ...,𝑇
from a frozen MQ-CNN model, and Corr(·, ·) indicates the

MLG ’23, August 15th, 2023, Long Beach CA Yang, et al.

Figure 1: Based on the encoder-decoder structure of MQ-CNN [39], the embedded graph ensemble module of GEANN maps
the time series encoded input ℎ𝑖,𝑡 through a number of GNN operations (details below). The outputs are then used to form
the ensemble representation 𝑔𝑖,𝑡 , which are decoded together with ℎ𝑖,𝑡 into forecasts.

Pearson correlation coefficient. Based on the similarity metric

we further obtain a 𝑘-NN embedding graph.

We also consider constructing graphs with domain-related

knowledge available. For online marketplace demand forecast-

ing, there often exists a rich set of relational information (e.g.,

site catalog information and customer browsing data). In this

paper, we use browse nodes, which are attributes visible on

the website of many e-commerce retailers to help customers

navigate through the vast selection of products. For example,

browse node set for a men’s fashion sweatshirt consists of

“Clothing, Shoes & Jewelry”, “Men”, “Clothing” and “Fashion

Hoodies & Sweatshirts.” These correspond to the nodes visited

in the browsing tree to locate the product. Thus, products that

belong to the same browse node are likely to be co-browsed

by customers, providing a notion of both substitutable and

complimentary goods.

We note that unlike the “ground-truth” graph used in spatio-

temporal tasks such as the traffic flow forecasting [22, 43], the

graph derived from browse nodes or other similar attributes

only indicates one of many complex and subtle relationships

existing among data, and it is inherently more difficult to show

the value-add of graph learning in this case.

3 RESULTS

In this section we evaluate GEANN on two demand datasets

from a large e-commerce retailer, that include time series

features such as unit sales, promotions, holidays and detail

page views as well as static metadata features such as catalog

information. Similar datasets with the same set of features

but generated in different time windows have been used in

[12, 39, 42]. We have obtained five years (2016-2021) of his-

tory for time series data. Each model is trained on three years

(2016-2019) of demand data, one year is held out for vali-

dation, and the final year is kept for evaluation. The task is

to forecast the 50th and 90th quantile of weekly demand for

up to one year at each of the 52 forecast creation time (see

Appendix A for metric details).

GEANN is implemented using the Pytorch framework with

8 NVIDIA V100 Tensor Core GPUs. The model is optimized

using AdamW [20] with default parameters. We limit our node

neighborhood to a depth of 2 with a maximum neighborhood

size of 10. For the graph encoding, we use a 2-layer GCN model

with 32 hidden units.

3.1 Small Scale Experiment

The first dataset consists of 100K products with the largest

number of total units sold during the training period from

5 main European marketplaces (EU5), and we compare the

following architectures:

• MQ-CNN: the MQ-CNN model [39]
• MQ-T: the MQ-Transformer model [12]
• GEANN-bw: GEANN using a browse node graph
• GEANN-kNN: GEANN using a kNN embedding graph
• GEANN-bw+kNN: GEANN using both a browse node

and kNN embedding graph

MQ-CNN and MQ-T serve as the baseline models in the com-

parison.1 For GEANN, each graph contains 100K nodes. For

1We mainly focus our comparison on MQ-CNN, as MQ-T requires substantially
more GPU memory, and we are already memory bound for GEANN. Moreover,
we see that the improvement of MQ-T on MQ-CNN is orthogonal to those in
GEANN, and thus they can be combined in the future study.

GEANN: Scalable Graph Augmentations for
Multi-Horizon Time Series Forecasting MLG ’23, August 15th, 2023, Long Beach CA

the browse node graph, we rank all other products related to a

particular product by the number of times where they appear

together in the same browse node, and we choose the top 10

products as the neighbors. For the kNN embedding graph, we

consider the 10 nearest neighbors calculated on the pretrained

embeddings of MQ-CNN. We also include the performance

of GEANN with both graphs. Furthermore, for the purpose of

ablation, we include 3 additional model configurations:

• MQ-CNN-L: MQ-CNN with the number of parameters

matching that of GEANN by increasing the dilation ca-

pacity of the CNN layer

• GEANN-idm: GEANN with a “zero-neighbor” graph (i.e.,

adjacency matrix being an identity matrix) that contains

no additional graph-related information

• GEANN-random: GEANN with a randomly connected

graph with no predictive information expected

We train each model to 100 epochs using batch size of 256,

and each model evaluation is computed with 5 identical runs

using different random seeds. We summarize each model per-

formance in Table 1. We observe all GEANN variants lead to

Table 1: Performance metrics on 100K EU5 retail products.
The results are rescaled so that they are relative improve-
ments over MQ-CNN. Lower is better. The number of pa-
rameters used by each model is also included.

Model P50 QL P90 QL Overall Param

MQ-CNN 1.000 1.000 1.000 850k
MQ-T 1.060 0.999 1.029 858k

MQ-CNN-L 1.059 1.047 1.053 898k
GEANN-idm 1.005 0.1003 1.004 900k
GEANN-random 1.003 0.993 0.998 900k

GEANN-bw 0.977 0.974 0.976 900k
GEANN-kNN 0.979 0.977 0.978 900k
GEANN-bw+kNN 0.969 0.983 0.976 915k

noticeable overall performance improvements (∼2%-3%) over

baselines. Notably, the three ablations do not seem to improve

upon baselines, even with similar number of parameters com-

pared to GEANN. Hence, the predictive information in the

browse node and 𝑘-NN embedding graph cannot be produced

from a randomly generated graph. GEANN-idm is expected to

be similar to MQ-CNN, and indeed it has on-par performance.

The ensemble of the two graphs does not seem to produce

further accuracy gain in our experiment.

3.2 Large Scale Application

We test on a large scale application of demand forecasting

that involves over 2MM products with most sales from North

America marketplaces (NA). Leveraging a graph with millions

of nodes is a rare challenge considered in the previous graph-

based methods [32, 41]. Again using MQ-CNN and MQ-T as

baselines, we compare the test performance of GEANN-bw,

GEANN-kNN and GEANN-bw+kNN. We train each model with

a batch size of 512. Each epoch takes around 30 minutes for

the model with a single graph and 1 hour with two graphs.

Each model evaluation is averaged across 3 identical runs, and

test results are summarized in Table 2. We notice that GEANN

Table 2: Performance metrics on 2 million NA retail prod-
ucts. The results are rescaled so that they are relative
improvements over MQ-CNN. Lower is better.

Model P50 QL P90 QL overall

MQ-CNN 1.000 1.000 1.000
MQ-T 0.999 0.998 0.998

GEANN-bw 0.997 0.985 0.991
GEANN-kNN 1.023 1.044 1.033
GEANN-bw+kNN 0.993 1.001 0.997

improves over baselines with the browse node graph, but in this

case it degrades with the kNN graph, which is likely to confirm

the predictive information from browsing data. A fundamental

question related to degraded performance when using the

data-driven graph is whether it is a function of the model

architecture or graph estimation procedure. Further analysis of

the data-driven graph suggests the data-driven graph is highly

volatile when 𝑘 is small, providing a low signal-to-noise ratio

(detailed in Section 3.3). The two graph ensemble method

performs on-par with the baselines mainly due to the under-

performance of the kNN graph.

Newly launched and Recently Out-Of-Stock Products.

For GEANN-bw, in addition to overall performance gain, we

also find that it significantly improves for two challenging

and important groups: newly launched, and recently out-of-

stock (OOS) products. Forecasting demand for new products

is generally difficult due to little to no time series history. For

recently OOS products, past sale history during OOS period

is no longer a good signal for demand prediction due to in-

ventory constraint. For these two cases, we show in Table 3

that GEANN brings substantially more gains (∼5%) compared

to the overall improvement. Our empirical analysis indicates

MLG ’23, August 15th, 2023, Long Beach CA Yang, et al.

that these accuracy improvements tend to stem from faster

calibration of demand forecasts for new and OOS products,

by adjusting their forecasts based on the historic demand of

similar products used as neighbors in GEANN. Hence by incor-

porating relational information, our model is able to leverage

greater contextual understanding to quickly calibrate forecasts

for cold-start products.

Table 3: Model performance comparison for newly
launched and recently out-of-stock products relative to
MQ-CNN.

Model GEANN-bw

P50 QL P90 QL overall

Newly Launched 0.975 0.910 0.943
Recently OOS 0.974 0.957 0.965

3.3 Data-Driven Graph Stability

In this paper, we have considered both data-driven and domain-

knowledge defined graphs. We observe that the performance

of using a data-driven graph is volatile, while the domain-

knowledge graph seems to produce consistent improvements

across different datasets. In this section, we conduct an in-

depth analysis for the data-drive graph used to provide insights

for this result.

Figure 2: Boxplots of stability by number of neighbors
for 𝑘-NN generated from Pearson correlation between em-
beddings H across 3 runs of MQ-CNN. Blue points repre-
sent outliers.

Distribution of similarity metrics. We first compare the

nearest neighbor distribution for these two graphs, respec-

tively, for the large scale dataset used in Section 3.2. Appendix

Figure 3 depicts a histogram of the estimated means and stan-

dard deviations of the Pearson correlations from 10 nearest

neighbors for each product in GEANN-kNN. The substantial

concentration of mean correlations near unity, and similarly the

concentration of standard deviation near zero, show that many

of the products have nearly interchangeable rank. On the other

hand, Appendix Figure 4, which shows a similar histogram

as those for co-browsing counts from 10 nearest neighbors

for each product in GEANN-bw, presents much stronger varia-

tion. Moreover, it is clear that a subset of products have strong

similarity relative to others, with mean co-browsing counts

above 35.

On 𝑘-NN graph volatility. One reason such context-based

𝑘-NN graphs may show unreliable relationships relevant to fore-

casts is the stability of the 𝑘-NN construction on embeddings

H. We define stability for a product 𝑎 and number of neighbors

𝑘 across runs 𝑟 , each run generating a context H(𝑟) , as

Stability(𝑎;𝑘,R) ≡
��⋂

𝑟 ∈R KNN𝑟 (𝑎;𝑘)
��

𝑘
.

Stability is a measure of preservation of graph similarity across

model training runs; a random selection of neighbors has a

stability proportional to a HyperGeometric(𝑁,𝑘, 𝑘), where 𝑁

is the number of data observations. When 𝑁 is reasonably

large, the stability is close to 0, and a deterministic graph has

a stability of 1.0. Prior work in natural language processing

field shows the stability of frequently used word embeddings

are often 0.8 or greater [3].

Figure 2 shows the distribution of stability by the number of

neighbors for our embedding based 𝑘-NN using Pearson corre-

lation across 3 model runs. We find generally low stability of

𝑘-NN relationships generated from the embeddings H . While

the stability of low numbers of neighbors is relatively larger at

0.5, it quickly decreases to represent an approximately random

graph as the number of neighbors increases— likely due to

orderings based on correlation being overcome by model noise.

Moreover, the stability is highly consistent across products. A

maximal stability of approximately 0.5 suggests that the 𝑘-NN

based graph may provide an inconsistent signal due to noise

in the embeddings H.

4 CONCLUSION

In this paper, we demonstrate that for demand forecasting our

proposed graph-based time series forecasting method GEANN

outperforms the current Seq2Seq models while maintaining

GEANN: Scalable Graph Augmentations for
Multi-Horizon Time Series Forecasting MLG ’23, August 15th, 2023, Long Beach CA

the scaling advantage. One interesting future direction is to

consider different GNN architecture such as the graph atten-

tion network architecture [34]. In addition, more sophisticated

graph construction methods can be used, such as choosing

graphs and model parameters based on their Network Commu-

nity Profile curves [13].

REFERENCES
[1] Carlos Aguilar-Palacios, Sergio Muñoz-Romero, and José luis Rojo-Álvarez.

2020. Cold-start promotional sales forecasting through gradient boosted-
based contrastive explanations. IEEE Access 8 (2020), 137574–137586.

[2] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert,
Yuyang Wang, Danielle Maddix, Caner Turkmen, Jan Gasthaus, Michael
Bohlke-Schneider, David Salinas, Lorenzo Stella, Franccois-Xavier Aubet,
Laurent Callot, and Tim Januschowski. 2022. Deep Learning for Time
Series Forecasting: Tutorial and Literature Survey. Comput. Surveys (may
2022).

[3] Angana Borah, Manash Pratim Barman, and Amit Awekar. 2021. Are word
embedding methods stable and should we care about it?. In Proceedings of
the 32nd ACM Conference on Hypertext and Social Media. 45–55.

[4] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. 2017. Con-
ditional time series forecasting with convolutional neural networks. arXiv
preprint arXiv:1703.04691 (2017).

[5] J Bottieau, Z De Grève, T Piraux, A Dubois, F Vallée, and J-F Toubeau.
2022. A cross-learning approach for cold-start forecasting of residential
photovoltaic generation. Electric Power Systems Research 212 (2022),
108415.

[6] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski,
Dustin Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and
Yuyang (Bernie) Wang. 2017. Probabilistic demand forecasting at scale. In
VLDB 2017.

[7] Carlos Capistrán, Christian Constandse, and Manuel Ramos-Francia. 2010.
Multi-horizon inflation forecasts using disaggregated data. Economic Mod-
elling 27, 3 (2010), 666–677.

[8] Ayush Chauhan, Archiki Prasad, Parth Gupta, Amiredddy Prashanth Reddy,
and Shiv Kumar Saini. 2020. Time Series Forecasting for Cold-Start Items
by Learning from Related Items using Memory Networks. In Companion
Proceedings of the Web Conference 2020. 120–121.

[9] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. 2020. Proba-
bilistic forecasting with temporal convolutional neural network. Neurocom-
puting 399 (2020), 491–501.

[10] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. 2019. Cluster-GCN: An Efficient Algorithm for Training Deep and
Large Graph Convolutional Networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD ’19). 257–266.

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using RNN encoder-decoder for statistical ma-
chine translation. arXiv preprint arXiv:1406.1078 (2014).

[12] Carson Eisenach, Yagna Patel, and Dhruv Madeka. 2020. MQTransformer:
Multi-Horizon Forecasts with Context Dependent and Feedback-Aware
Attention. https://arxiv.org/abs/2009.14799

[13] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael Mahoney.
2017. LASAGNE: Locality And Structure Aware Graph Node Embedding.
IEEE/WIC/ACM International Conference on Web Intelligence (10 2017).

[14] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

[15] Ankit Gandhi, Aakanksha, Sivaramakrishnan Kaveri, and Vineet Chaoji.
2021. Spatio-Temporal Multi-Graph Networks for Demand Forecasting
in Online Marketplaces. In Machine Learning and Knowledge Discovery in
Databases. Applied Data Science Track: European Conference, ECML PKDD
2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part IV. 187–203.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In Advances in Neural Information
Processing Systems, Vol. 30.

[17] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional
Networks on Graph-Structured Data. https://arxiv.org/abs/1506.05163

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[19] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou.
2021. https://arxiv.org/abs/2106.05150

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR.

[21] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang
Wang, and Xifeng Yan. 2019. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecasting. Advances in
neural information processing systems 32 (2019).

[22] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convo-
lutional recurrent neural network: Data-driven traffic forecasting. arXiv
preprint arXiv:1707.01926 (2017).

[23] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion
Convolutional Recurrent Neural Network: Data-Driven Traffic Forecast-
ing. In International Conference on Learning Representations. https:
//openreview.net/forum?id=SJiHXGWAZ

[24] Bryan Lim. 2018. Forecasting Treatment Responses Over Time Using
Recurrent Marginal Structural Networks. In Advances in Neural Information
Processing Systems, Vol. 31.

[25] Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal
fusion transformers for interpretable multi-horizon time series forecasting.
International Journal of Forecasting 37, 4 (2021), 1748–1764.

[26] Songtao Liu, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao,
Junzhou Huang, and Dinghao Wu. 2021. Local Augmentation for Graph
Neural Networks. CoRR abs/2109.03856 (2021). arXiv:2109.03856 https:
//arxiv.org/abs/2109.03856

[27] Dhruv Madeka, Lucas Swiniarski, Dean Foster, Leo Razoumov, Kari
Torkkola, and Ruofeng Wen. 2018. Sample path generation for probabilis-
tic demand forecasting. In KDD 2018 Workshop on Mining and Learning
from Time Series. https://www.amazon.science/publications/sample-path-
generation-for-probabilistic-demand-forecasting

[28] Jihoon Moon, Junhong Kim, Pilsung Kang, and Eenjun Hwang. 2020.
Solving the cold-start problem in short-term load forecasting using tree-
based methods. Energies 13, 4 (2020), 886.

[29] Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong,
Kyung-Min Kim, Jung-Woo Ha, and Hyunwoo J Kim. 2021. Metropolis-
Hastings Data Augmentation for Graph Neural Networks. In Advances in
Neural Information Processing Systems, Vol. 34. Curran Associates, Inc.,
19010–19020.

[30] Victor Garcia Satorras, Syama Sundar Rangapuram, and Tim Januschowski.
2022. Multivariate Time Series Forecasting with Latent Graph Inference.
https://openreview.net/forum?id=JpNH4CW_zl

[31] Omer Berat Sezer and Ahmet Murat Ozbayoglu. 2018. Algorithmic finan-
cial trading with deep convolutional neural networks: Time series to image
conversion approach. Applied Soft Computing 70 (2018), 525–538.

[32] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete graph structure learn-
ing for forecasting multiple time series. arXiv preprint arXiv:2101.06861
(2021).

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence
learning with neural networks. In NIPS.

https://arxiv.org/abs/2009.14799
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/2106.05150
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ
https://arxiv.org/abs/2109.03856
https://arxiv.org/abs/2109.03856
https://arxiv.org/abs/2109.03856
https://www.amazon.science/publications/sample-path-generation-for-probabilistic-demand-forecasting
https://www.amazon.science/publications/sample-path-generation-for-probabilistic-demand-forecasting
https://openreview.net/forum?id=JpNH4CW_zl

MLG ’23, August 15th, 2023, Long Beach CA Yang, et al.

[34] Petar Velivcković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2017. Graph Attention Networks. https:
//arxiv.org/abs/1710.10903

[35] Petar Velivcković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Inter-
national Conference on Learning Representations.

[36] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric,
Highly-Performant Package for Graph Neural Networks. arXiv preprint
arXiv:1909.01315 (2019).

[37] Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang,
Siddharth Bhatia, and Bryan Hooi. 2021. Adaptive Data Augmentation on
Temporal Graphs. In Advances in Neural Information Processing Systems,
Vol. 34. Curran Associates, Inc., 1440–1452.

[38] Ruofeng Wen and Kari Torkkola. 2019. Deep generative quantile-copula
models for probabilistic forecasting. In ICML 2019 Workshop on Time Se-
ries. https://www.amazon.science/publications/deep-generative-quantile-
copula-models-for-probabilistic-forecasting

[39] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. 2017. A Multi-Horizon Quantile Recurrent Forecaster. https:
//arxiv.org/abs/1711.11053

[40] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. 2020. Deep
transformer models for time series forecasting: The influenza prevalence
case. arXiv preprint arXiv:2001.08317 (2020).

[41] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and
Chengqi Zhang. 2020. Connecting the Dots: Multivariate Time Series
Forecasting with Graph Neural Networks. arXiv:2005.11650 [cs.LG]

[42] Sitan Yang, Carson Eisenach, and Dhruv Madeka. 2022. MQRetNN: Multi-
Horizon Time Series Forecasting with Retrieval Augmentation. KDD. https:
//doi.org/10.48550/ARXIV.2207.10517

[43] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph
convolutional networks: A deep learning framework for traffic forecasting.
arXiv preprint arXiv:1709.04875 (2017).

[44] J N Zhang and Kazumitsu Nawata. 2018. Multi-step prediction for in-
fluenza outbreak by an adjusted long short-term memory. Epidemiology
and Infection 146 (2018), 809 – 816.

[45] Daniel Zūgner, Victor Garcia Satorras, Tim Januschowski, Stephan Gün-
nemann, and Jan Gasthaus. 2021. A study of joint graph inference and
forecasting. In ICML 2021 Time Series Workshop.

A DISTRIBUTIONAL QUANTILE FORECASTS

We refer to distributional forecasts as quantile forecasts, and

we consider our target application (demand forecasting) as

predicting certain quantiles of the future demand distribution

at a weekly grain for up to one year in the future. A natural

metric measuring how accurate a quantile forecast 𝑓 at the

𝑞-th quantile with respect to the true demand 𝑑 is the quantile

loss 𝐿 (QL), as defined below:

𝐿𝑞 (𝑑, 𝑓) = 𝑞(𝑑 − 𝑓)+ + (1 − 𝑞) (𝑓 − 𝑑)+, (4)

where (·)+ = max(·, 0). This metric is typically aggregated

across samples and time horizons, and it is weighted by their

actual demand. The weighted P50 and P90 QL are used to

measure the quality of distributional forecasts as the 50th and

90th percentile of the demand distribution. The same metric

has been used for previous work on multi-horizon time series

forecasting [12, 24, 39, 42].

B GEANN LEARNING ALGORITHM

In this section, we describe the learning algorithm of GEANN.

See the details in Algorithm 1. While stochastic gradient de-

scent (SGD) is the optimization algorithm shown, in practice

other methods such as Adam [20] is often used. The graph

Algorithm 1 GEANN Learning Algorithm

Require: Number of epochs 𝐸, mini-batch size 𝑚, num-
ber of GNN layers 𝐿, candidate graphs G (1) , . . . ,G (𝑅) ,
context length 𝐶, maximum horizon 𝐻 , training data(
y𝑖,1:𝑇 , x𝑖,1:𝑇 , c𝑖

)
𝑖∈[𝑁] , loss function ℓ, learning rate 𝜂, initial

parameters 𝜽 .
for 𝑖ep ∈ {1, . . . , 𝐸} do

Partition [𝑁] into mini-batchesM1, . . . ,M𝑁 /𝑚
for 𝑏 ∈ {1, . . . , 𝑁 /𝑚} do
ℎ𝑖,𝑡 = Encoder𝜃

(
y𝑖,𝑡−𝐶 :𝑡 ,X𝑖,𝑡−𝐶 :𝑡 , 𝑋

(𝑠)
𝑖

)
for 𝑟 ∈ {1, . . . , 𝑅} do

M (𝑟) ,G (𝑟) = GetHopSubgraph(M𝑏 ,G (𝑟) , 𝐿).
ℎ
(𝑟)
𝑖,𝑡

= Encoder𝜃
(
y𝑖,𝑡−𝐶 :𝑡 ,X𝑖,𝑡−𝐶 :𝑡 , 𝑋

(𝑠)
𝑖

)
H(𝑟)𝑡 = (ℎ (𝑟)

𝑖,𝑡
)
𝑖∈M (𝑟)

.(
𝑔
(𝑟)
𝑖,𝑡

)
𝑖∈M (𝑟)

= GNN(𝑟)
𝜃

(
H(𝑟)𝑡 ,G (𝑟)

)
.

end for
g𝑖,𝑡 = (𝑔 (1)𝑖,𝑡

, . . . , 𝑔
(𝑅)
𝑖,𝑡
) for all 𝑖 ∈ M𝑏 .(

𝑦𝑖,𝑡,H
)
= Decoder𝜽 (ℎ𝑖,𝑡 , g𝑖,𝑡).

Loss(𝜽) = ∑
𝑖∈M𝑏

∑
𝑡 ℓ (𝑦𝑖,𝑡,H, 𝑦𝑖,𝑡,H).

𝜽 ← 𝜽 − 𝜂∇ Loss(𝜽).
end for

end for
return 𝜽 .

ensemble module first identifies the time series in the current

mini-batch (denoted asM𝑏). For each graph G (𝑟) , the module

determines a subgraph G (𝑟) of G (𝑟) induced by the “𝐿-hop-

out neighborhood” of the seed nodesM𝑏 , and containing all

nodes M (𝑟) reached by traversing at most 𝐿 edges on G (𝑟) .
This is also the set of nodes reached by applying an 𝐿-layer

graph convolution on seed nodes [16]. In this process, G (𝑟)

and G (𝑟) are guaranteed to produce the same output for seed

nodes inM𝑏 , ensuring that a gradient estimated with elements

ofM𝑏 remains unbiased. For large graphs, the neighborhood

memberships can be pre-computed and stored offline while

only retrieving nodes of G (𝑟) online in each mini-batch, effec-

tively reducing the use of GPU memory. Notice that only the

graph representations of seed nodes are used in the decoder

and backpropagation step. We note that the sparsity of G (𝑟)

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://www.amazon.science/publications/deep-generative-quantile-copula-models-for-probabilistic-forecasting
https://www.amazon.science/publications/deep-generative-quantile-copula-models-for-probabilistic-forecasting
https://arxiv.org/abs/1711.11053
https://arxiv.org/abs/1711.11053
https://arxiv.org/abs/2005.11650
https://doi.org/10.48550/ARXIV.2207.10517
https://doi.org/10.48550/ARXIV.2207.10517

GEANN: Scalable Graph Augmentations for
Multi-Horizon Time Series Forecasting MLG ’23, August 15th, 2023, Long Beach CA

Figure 3: Histogram of the estimated mean and standard
deviation of the Pearson correlations in GEANN-kNN.

Figure 4: Histogram of the estimated mean and standard
deviation of the co-browsing counts in GEANN-bw.

is critical for the learning algorithm to be efficiently trained

in parallel. This directly controls the size of M (𝑟) . Therefore

in this process, we typically apply a “top-k” operation on the

given graph so that ifM𝑏 has 𝑚 nodes, the upper bound for

the number of nodes in M (𝑟) is 𝑚(1 + 𝑘𝐿). Consequently we

can determine the value of (𝑚,𝑘) based on memory constraints

on the GPU.

C ADDITIONAL FIGURES FOR DATA-DRIVE
GRAPH ANALYSIS

In this section, we include additional figures for the data-

drive graph stability analysis conducted in Section 3.3. See

Figure 3 and Figure 4. In particular, we calculate using the kNN

embedding graph the means and standard deviations of the

Pearson correlations from 10 nearest neighbors of each product,

and we compare with those calculated from the browse node

graph. We note that the score associated in the browse node

graph is the co-browsing count, i.e., the number of times a

certain product and its neighbor product belong to the same

node in the browsing tree, and we use this score to rank all

neighbor products for applying the “top-k” operation.

	Abstract
	1 Introduction
	2 Methods
	2.1 Problem Formulation
	2.2 Model Architecture

	3 Results
	3.1 Small Scale Experiment
	3.2 Large Scale Application
	3.3 Data-Driven Graph Stability

	4 Conclusion
	References
	A Distributional Quantile Forecasts
	B GEANN Learning Algorithm
	C Additional Figures for Data-drive Graph Analysis

