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ABSTRACT
Learning compact representation from customer shopping behav-
iors is at the core of web-scale E-commerce recommender systems.
At Amazon, we put great efforts into learning embedding of cus-
tomer engagements in order to fuel multiple downstream tasks for
better recommendation services. In this work, we define the notion
of shopping trajectory that consists of customer interactions at the
categorical level of products, then construct an end-to-end model
namely C-STAR which is capable of learning rich embedding for
representing the variable-length customer trajectory. C-STAR ex-
plicitly captures the trajectory distribution similarity and trajectory
topological semantics, providing a coarse-to-fine trajectory repre-
sentation learning paradigm both structurally and semantically. We
evaluate the model on Amazon proprietary data as well as four
public datasets, where the learned embeddings have shown to be ef-
fective for customer-centric tasks including customer segmentation
and shopping trajectory completion.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→ Learning latent representations.
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1 INTRODUCTION
Amazon provides versatile recommendation services at different
shopping stages, e.g., from product searching and browsing to
shopping-cart checkout. To alleviate information overload, per-
sonalized recommendations assist customers in effectively and
promptly discovering desirables from the large product corpus.
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Figure 1: Illustration of trajectory-wise similarity learning.

Apart from prediction accuracy, the other prong of facilitating
reliable recommendation lies in performing it in an interpretable
manner to the end customers. This motivates us to understand
customers’ shopping preferences and intentions through a variety
of historical engagements and contexts.

To achieve this goal, we aim to build up an adaptive algorithm
that can effectively learn rich representations from engagement
data. Such learned representations would benefit multiple down-
stream customer understanding and serving applications [7, 10,
11, 21, 27, 57]. For instance, on the one hand, segmenting embed-
ded customers who are alike in the shopping behaviors provides
a general understanding to recognize their similar interests and
affinities, giving rise to inspirational recommendations. On the
other hand, explicitly learning and aggregating customer shopping
topology information is tractable in the embedding space, which
develops a more focused individual analysis and prediction. With
these enhanced techniques, we help to delight customers with more
personalized shopping experiences.

Challenges.We identify the fundamental requirement for the
learned representations is to jointly pose the properties of accurate
similarity measurement and informative semantic retention. The
technical challenges are thus twofold:
• Customer engagements vary both quantitatively and substan-
tively. How to learn the fixed-size representations whilst thor-
oughly reflecting on customers’ shopping dynamic and diverse
activities is the key question that remains to be investigated. This
is particularly important for customer segmentation because the
estimated similarity is normally ascertained as their mutual dis-
tance in the embedding space, which should be matched with the
real-world measurement. One straightforward implementation is
to “aggregate” all kinds of latent information, e.g., concatenation
or pooling of feature embeddings; this, however, may be naive
to hardly provide the theoretical guarantee.
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• Customer historical interactions reflect their preferences and
interests. Vectorizing such information into the form of compact
embeddings is a prerequisite for explicit analysis and inference
of customers’ shopping intents. Apart from the customer-wise
similarity measurement, this unified representation should also
retain semantics coming from the engaged product knowledge
as much and effectively as possible. This is vital for various rec-
ommendation scenarios such as product complements.

Approach and Contributions. In this work, we investigate the
aforementioned problem and introduce a novel Customer Shopping
TrAjectory Representation Learning framework (C-STAR). Our
proposed C-STAR can effectively encode customer variable-length
engagements in the continuous Euclidean space, where they can
be efficiently utilized for customer understanding and recommen-
dations. Specifically, we first introduce Amazon PR-Graph [25], i.e.,
an internal knowledge base of product categories and relations
that are organized in the graph format. Customers’ isolated prod-
uct interactions are mapped into PR-Graph forming the notion
of shopping trajectories. Each trajectory can be essentially viewed
as a sub-graph pattern of PR-Graph, which allows us to learn the
customer trajectory representation with both structural and se-
mantic information. The proposed C-STAR provides an end-to-end
representation learning paradigm that produces a coarse-to-fine
trajectory-wise similarity measurement as well as informative se-
mantic enrichment in the embedding space. Concretely, we have
made the following technical contributions:

(1) Trajectory-wise Distribution Similarity. Each customer is associ-
ated with a unique shopping trajectory, we make an assumption
that elements constructing the trajectory are samples from an
unknown probability distribution, in terms of the customer’s un-
derlying preferences. We then propose to capture the trajectory-
wise similarity by measuring the distribution distance, and fur-
ther embed such information into the trajectory representations.
Underpinned by the Optimal Transport Theory, our proposed
method thus presents a matched distance/similarity measure-
ment between the realistic and embedding space. An illustrative
process is demonstrated in Figure 1.

(2) Trajectory Topological Semantics.To capture the relational knowl-
edge among the trajectory elements, we further propose to learn
semantics from the structure posed by PR-Graph. This will not
merely enrich the semantics of trajectory representations but
also provide a fine-grained proximity measurement, refining its
capability for shopping intent identification and complementary
recommendation.

(3) Large-Scale Evaluation. Besides the methodology contributions,
we propose two evaluation tasks and systematically conduct
experiments on both large-scale Amazon internal datasets and
four public datasets in order to measure the quality of the
learned representations by C-STAR.

2 RELATEDWORK
Probability Distribution Distance Learning. To quantify the
distance between probability distributions, one may utilize diver-
gences such as Kullback–Leibler divergence [37], Jensen–Shannon
divergence [20], or metrics such as Hellinger distance [29]. Among

these measurement tools, Wasserstein metric [30] with several rig-
orous mathematical properties has recently attracted the attention
in the machine learning community, especially in generative mod-
eling, e.g., generative adversarial networks [1] and variational auto-
encoders [53]. Themajor concern of the classicWasserstein distance
is the expensive computation cost for high-dimensional distribu-
tions. Different from numerical optimization methods [15, 34, 50],
recent studies of Sliced-Wasserstein distance [3, 32] presents sig-
nificantly lower computational requirements. The idea is to ob-
tain adequate linear projections of the original distribution one-
dimensional ones, and then average the distances between these
projected counterparts, based on the fact that one-dimensional
Wasserstein distance has a closed-form solution. Thus, the sliced-
Wasserstein distance motivates a variety of practical tasks [5, 12,
33, 35, 42, 43, 47, 72], which also underpins our proposed modeling
of the high-dimensional trajectory distribution similarity.

Representation Learning for Graphs. Graph representation
learning aims to learn both topologies as well as the features of
graph components, e.g., nodes, edges, and sub-graph patterns [51,
52, 64, 65, 71, 73–75]. Then the learned embeddings can be used
as feature inputs for downstream machine-learning tasks. While
traditional methods usually rely on summarizing graph statistics
or manual feature engineering [24], graph convolutional networks
(GCNs) are more flexible and adaptive to learning the latent graph
information, and thus they have witnessed rapid development in
recent years. While early GCN work studies the graph convolutions
on the spectral domain [4, 16], spatial-based GCN models [2, 23]
re-define the graph convolution operations by aggregating the
neighborhood embeddings to update the target node’s embedding.
Due to their powerful ability to learn the hidden graph patterns, we
thus employ the graph convolutions in our proposed framework
for explicit knowledge extraction from graph-structured data.

Product Knowledge Mining at Amazon. In Amazon, there is
a stream of research working on knowledge discovery of product
semantics and relations [6, 18, 38, 40, 44, 46, 48, 68, 70, 76]. Product
knowledge graph is essential for both product understanding as
well as customer understanding. It builds the foundation to inspire
various applications such as error detection [13], complementary
and sequential recommendation [25, 39, 61], explainability [59],
and product summarization [54].

In this work, we make use of PR-Graph, a graph of product
category, which categorizes numerous products into around 15K
nodes and generalizes their categorical mutual relations into 417K
edges. Different from previous work that utilizes PR-Graph mainly
to learn node-level embeddings [25, 61], our work investigates a
novel learning setting of sub-graph patterns for customer shopping
trajectories.We propose to jointly capture trajectory-wise similarity
and semantics, enabling the learned C-STAR embeddings to be
effectual for multiple downstream customer-centric tasks.

3 PROBLEM FORMULATION
PR-Graph. Amazon builds a product relational graph, namely PR-
Graph, to summarize high-level product knowledge for different
purposes of research and applications [25, 61]. PR-Graph is rep-
resented in the graph format as G = (T, E, V) . While T and E ⊆
T×T denote the lists of graph nodes and edges, V ∈ R|T |×𝑑 is the



list of 𝑑-dimensional feature embeddings associated with nodes
in T. Concretely, Amazon categorizes all products into around
15K nodes1 of T, and creates 417K linkages of E to generalize the
strongly-correlated product-product relations, e.g., co-purchases.

Problem Formulation. As T = [𝑡𝑛]
|T |
𝑛=1 denotes all observed

nodes in G, for each customer 𝑖 , his/her all interactions over T can
be snapshot as T𝑖 ⊆ T, i.e., T𝑖 = [𝑡𝑖𝑛 ]

𝑁𝑖
𝑛=1 with 𝑁𝑖 elements. Intuitively,

based on the topological knowledge in G, customer shopping tra-
jectory T𝑖 is derived as the unique sub-graph pattern G𝑖 = (T𝑖 , E𝑖 ,
V𝑖 ) . Hence, the goal is to learn the customer trajectory represen-
tation from knowledge in G𝑖 , such that the learned representation
simultaneously satisfies the following criterion:
• Trajectory Similarity Measurement. This provides a macro
view of sub-graph structure learning and thus is beneficial for
applications, such as customer segmentation, that usually require
a holistic measurement of customer-wise similarity.
• Trajectory Feature Summarization. This captures the seman-
tics of micro trajectory elements to boost applications such as
shopping trajectory completion.

4 C-STAR METHODOLOGY
We start with preliminaries in § 4.1 and formally derive our method-
ologies in § 4.2 and model training details in § 4.4. We explain the
key notations used in this paper in Table 1.

4.1 Preliminaries
Optimal Transport andWassersteinMetrics.Optimal transport
(OT) is the general problem of moving one distribution of mass, e.g.,
𝑃 , to another, e.g., 𝑄 , as efficiently as possible. Among all possible
transportation plans between 𝑃 and 𝑄 , the one with the minimum
cost is called the optimal transport map. The derived cost is defined
as their distribution distance:

𝑊𝑝 (𝑃,𝑄) =
(

inf
𝑓 ∈𝑇𝑃 (𝑃,𝑄 )

∫
∥𝒙 − 𝑓 (𝒙)∥𝑝𝑑𝑃 (𝒙)

) 1
𝑝
, 𝑝 ≥ 1, (1)

where the infimum is over𝑇𝑃 (𝑃,𝑄 ) that denotes all transport plans
between 𝑃 and 𝑄 . If a minimizer exists, denoted by 𝑓 ∗, it is thus
the solution to the OT problem. For one-dimensional distributions,
there is a closed-form solution to compute such optimal transport
map 𝑓 ∗ as 𝑓 ∗ (𝑥) := 𝐹−1

𝑃

(
𝐹𝑄 (𝑥)

)
; 𝐹 is the cumulative distribution

function (CDF) associated with the underlying distribution.
For the higher-dimensional distributions, the metric of sliced-

Wasserstein distance [32, 35, 43] is introduced and defined as:

𝑆𝑊𝑝 (𝑃,𝑄) =
( ∫
S𝑑−1

(
𝑊𝑝 (𝑔𝜽 #𝑃,𝑔𝜽 #𝑄)

)𝑝
𝑑𝜽

) 1
𝑝
, (2)

where 𝑔𝜽 #𝑃 denotes the projection of 𝑃 by function 𝑔𝜽 : R𝑑 →
R and 𝑔𝜽 (𝒙 ) = 𝜽T𝒙, where 𝜽 ∈ S𝑑−1 is a unit vector in the unit
𝑑-dimensional hypersphere. Since it satisfies positive-definiteness,
symmetry, and triangle inequality [32, 35], it is qualified for distance
measurement. Hence, we employ the sliced-Wasserstein distance
as the theoretical foundation for our proposed model to capture
trajectory similarities.

1Data statistics are in § 5.1. 2 Non-bold characters refer to general notations, e.g.,
scalars, functions and distributions; bold ones highlight high-dimensional objects, e.g.,
vectors and multivariate random variables.

Table 1: Notations and meanings.

Notation Explanation

G=(T, E,V) PR-Graph with sets of nodes, edges, and features.

G𝑖=(T𝑖 , E𝑖 ,V𝑖 ) Customer trajectory pattern.

T𝑖=[𝑡𝑖𝑛 ]
𝑁𝑖
𝑛=1 Node list of 𝑁𝑖 trajectory elements.

V𝑖=[𝒗𝑖𝑛 ]
𝑁𝑖
𝑛=1 Feature list associated with 𝑁𝑖 trajectory elements.

𝑓#𝑃 Pushfoward of distribution 𝑃 .

𝑊𝑝 ( ·, · ) , 𝑆𝑊𝑝 ( ·, · ) 𝑝-Wasserstein distance, Sliced 𝑝-Wasserstein distance.

𝐹𝑃 ( ·) , 𝐹 −1𝑃
( ·) Cumulative distribution function, quantile function.

R, S Euclidean space and unit hypersphere.

𝜽 Unit vector in S.

𝑔𝜽 ( ·) Linear projection function with parameter vector 𝜽 .

𝑃0 , 𝑃𝑖 Reference distribution and input distribution.

𝑃𝜽
0 , 𝑃

𝜽
𝑖

The slices of 𝑃0 , 𝑃𝑖 derived by 𝜽 .

𝑓 ∗ ( ·) Optimal transport map between two distributions.

𝛿 ( ·) Dirac delta function.

𝜏 ( · | · ) Ascending rank in the sorting of the given list.

V𝜽
𝑖
, V𝜽

0 Feature lists associated with distribution slices.

TSE( ·) Trajectory Similarity Encoder.

𝑬𝑖 Embedding of G𝑖 with trajectory similarity information.

𝑬
′
𝑖 Embedding of G𝑖 with trajectory structural information.

𝑬★
𝑖 Ultimate trajectory representation.

L𝑀𝑅𝐿 , L Margin ranking loss term and objective function.

Δ Set of all trainable embeddings and variables.

4.2 Trajectory Distribution Similarity
Consider we have a list of probability measures [𝑃𝑖 ]𝑀𝑖=1 defined in
R𝑑 for𝑀 observed trajectories in total. For each shopping trajectory,
there is a unique associated feature list V𝑖 = [𝒗𝑡𝑖𝑛 ∈ R

𝑑 ]𝑁𝑖
𝑛=1 with 𝑁𝑖

elements. We assume that these feature elements are sampled from
the underlying distribution 𝑃𝑖 , and what we have snapshot is the
empirical (discrete) distribution 𝑃𝑖 with its empirical CDF as:

𝐹
𝑃𝑖
(𝒙) = 1

𝑁𝑖

∑︁𝑁𝑖

𝑛=1
𝛿 (𝒙 − 𝒗𝑡𝑖𝑛 ). (3)

𝛿 ( ·) returns 1 if the input is zero and 0 otherwise3. Generally, we
believe these empirical distributions are representative, i.e., 𝑃𝑖 ≈ 𝑃𝑖 ;
thus we would refer 𝑃𝑖 to 𝑃𝑖 hereafter to avoid clutter notation.

To explicitly measure the trajectory-wise similarity, we propose
to compare the input trajectory distribution with a certain trainable
reference that functions as the “origin” in the trajectory embed-
ding space. Specifically, we introduce a reference distribution 𝑃0
with the embedding list V0 = [𝒗𝑡0𝑛 ∈ R

𝑑 ]𝑁
𝑛=1, elements in which are

the trainable embeddings. Then our target is: to get the distance
between the distribution pair (𝑃0, 𝑃𝑖 ) to guide the learning of asso-
ciated trajectory representations (𝑬0, 𝑬𝑖 ) with a matched distance
measurement back in the embedding space.

Directly solving the high-dimensional optimal transport is ex-
tremely difficult, we therefore conduct distribution slicing for com-
puting one-dimensional Wasserstein distance. Let 𝑔𝜽 (𝒙 ) denote the
linear projection function, i.e., 𝑔𝜽 (𝒙 ) = 𝜽T𝒙 , where 𝜽 ∈ S𝑑−1 is a unit

3It is formally defined as Dirac delta function with
∫
𝛿 (𝑥 )𝑑𝑥 = 1 for continuous inputs.



vector in the unit 𝑑-dimensional hypersphere. For notation simplic-
ity, we use 𝑃𝜽

𝑖
:= 𝑔𝜽#𝑃𝑖 to denote the slice of 𝑃𝑖 w.r.t. 𝑔𝜽 (i.e., 𝑃𝜽

𝑖
is the

push-forwarded one-dimensional distribution in R); similarly 𝑃𝜽
0

:= 𝑔𝜽 #𝑃0. To differentiate the high-dimensional input of Eqn.(3), 𝑥𝜽
denotes the projected input that lives in R. For each sliced empirical
distribution 𝑃𝜽

𝑖
, the corresponding features are V𝜽

𝑖
= [𝜽T𝒗

𝑡𝑖𝑛
]𝑁𝑖
𝑛=1.

Similarly, the sliced reference list is V𝜽
0 = [𝜽T𝒗

𝑡0𝑛
]𝑁
𝑛=1. Notice that

their empirical CDFs, e.g., 𝐹
𝑃𝜽
0
(𝑥𝜽 ) = 1

𝑁

∑𝑁
𝑛=1 𝛿 (𝑥𝜽 − 𝜽T · 𝒗

𝑡0𝑛
) , is

monotonically increasing. This implies that, if we know the rank-
ing of each input 𝑥𝜽 in the ascending sorting of V𝜽

0 , denoted by
𝜏 (𝑥𝜽 |V𝜽

0 ) , the optimal transport map 𝑓 ∗ can be more quantitatively
interpreted and approximated for the discrete case as follows: For
V𝜽
𝑖

and V𝜽
0 , we implement 𝑓 ∗ (𝑥𝜽 |V𝜽

𝑖
) = 𝐹 −1

𝑃𝜽
𝑖

(
𝐹
𝑃𝜽
0
(𝑥𝜽 )

)
between

(V𝜽
𝑖
, V𝜽

0 ) with the following mapping process:

𝑓 ∗ (𝑥𝜽 |V𝜽
𝑖 ) = argmin

𝑥 ′∈V𝜽
𝑖

(
𝜏 (𝑥 ′ |V𝜽

𝑖 ) ≥
𝑁𝑖

𝑁
· 𝜏 (𝑥𝜽 |V𝜽

0 )
)
. (4)

Please notice that, the indicator 𝜏 ( ·) can be actually pre-processed
via “argsort” to V𝜽

𝑖
and “sort” to V𝜽

0 . In Eqn.(4), to align the fea-
ture list cardinalities (i.e., 𝑁𝑖 ≠ |𝑁 |) but not demolish their original
semantics, we provide a neat yet effective solution, i.e., conduct
linear interpolation, as it is essentially a process for data continu-
ing. For other techniques such as data augmentation over latent
features [17, 41], they are orthogonal to our contribution and we
leave them as future work.

Trajectory Similarity Encoding. For each pair of distribu-
tion slices, e.g., (𝑃𝜽

0 , 𝑃
𝜽
𝑖
) , their optimal transport map produces the

shortest one-dimensional distance, i.e.,𝑊𝑝 (𝑃𝜽
0 , 𝑃

𝜽
𝑖
) . According to

the theory shown in Eqn.(2), the next step is to traverse all 𝜽 ∈ S𝑑−1
for the ultimate transport integral between original distributions
(𝑃0, 𝑃𝑖 ). However, this may be infeasible in practice to have an infi-
nite number of projections drawn from S𝑑−1; therefore, in this work,
with 𝜽𝑠 denoting the 𝑠-th projection parameter uniformly sampled
from S𝑑−1, we approach this target with the Monte-Carlo approxi-
mation. Consequently, this leads to a cumulative sliced-Wasserstein
distance between the original trajectory distributions:

𝑆𝑊𝑝 (𝑃0, 𝑃𝑖 ) ≈
( 1
𝑆

∑︁𝑆

𝑠=1
𝑊𝑝 (𝑃𝜽𝑠

0 , 𝑃
𝜽𝑠

𝑖
)𝑝
) 1
𝑝
. (5)

Based on the algorithmic implementation shown in Eqn.(4) with
the associated distance regularization, we proceed to encode the
trajectory representation accordingly. Let Θ = {𝜽𝑠 }𝑆𝑠=1 denote the
set of sampled projection parameters. Firstly, we encode the vector
𝑶 ∈ R𝑁 ·𝑆 from the embedding reference V0 = [𝒗𝑡0𝑛 ]

𝑁
𝑛=1 of 𝑃0 as:

𝑶 :=
1
𝑆𝑁




𝑆
𝑠=1




𝑁
𝑛=1

𝜽𝑠
T𝒗𝑡0𝑛 . (6)

∥ denotes the concatenation operation along the innermost dimen-
sion. Given the input feature list V𝑖 , our Trajectory Similarity
Encoder (TSE) is formally defined as follows:

TSE(V𝑖 |Θ) :=
1
𝑆𝑁




𝑆
𝑠=1




𝑁
𝑛=1

𝑓 ∗ (𝜽T𝑠 𝒗𝑡0𝑛 |V
𝜽𝑠

𝑖
) − 𝑶 . (7)

Let 𝑬𝑖 ∈ R𝑁 ·𝑆 denote the encoded representation from TSE. By
setting 𝑝 = 2, ∥𝑬𝑖 − 𝑬 𝑗 ∥2 is exactly the Euclidean distance form that
is more favorable to scenarios for recalling vectorized objects.

Algorithm 1: C-STAR Learning Algorithm.
Input: Trajectories {G𝑖 }𝑀𝑖=1 with corresponding feature lists {V𝑖 }𝑀𝑖=1 ;

variables Θ, Δ, 𝑆 , 𝑁 , 𝜇, 𝐿, 𝜌 , · · ·
1 while not converge do
2 for each trajectory G𝑖 ∈ {G𝑖 }𝑀𝑖=1 . do
3 G𝑖 ← Sampled trajectory of G𝑖 ;
4 V𝑖 ← Updated feature list associated with G𝑖 ;
5 𝑬𝑖 ← TSE(V𝑖 |Θ) ; ⊲ Eqn.(7)

6 𝑬
′
𝑖 ← Encode from GCN [31] 𝑬★

𝑖 ← [𝑬𝑖 , 𝑬
′
𝑖 ] ;

7 G𝑗 , G𝑘 ← Positive and negative samples from Ω+𝑖 and Ω−𝑖 ;
8 𝑬★

𝑗 , 𝑬
★
𝑘
← Trajectory representations of G𝑗 and G𝑘 ;

9 𝐷 (G𝑖 , G𝑗 ) ← ∥𝑬★
𝑖 − 𝑬★

𝑗 ∥2 ;
10 𝐷 (G𝑖 , G𝑘 ) ← ∥𝑬★

𝑖 − 𝑬★
𝑘
∥2 ;

11 L𝑀𝑅𝐿 ← Update the margin ranking loss ; ⊲ Eqn.(9)

12 L ← Optimize C-STAR with regularization ; ⊲ Eqn.(10)

13 returnWell trained model C-STAR.

4.3 Trajectory Topological Semantics
Since customer trajectories are induced from PR-Graph, they essen-
tially inherit the semantics embedded in PR-Graph. To fuse such
knowledge and enrich the ultimate trajectory representations, we
propose to learn the trajectory knowledgeable features.

We employ the graph convolutional paradigm due to its powerful
ability to learn high-order graph information [60]. The general idea
of Graph Convolution Network (GCN) is to encapsulate graph
information into condensed outputs, via iteratively propagating
and aggregating latent features of node neighbors via the graph
topology [9, 23, 31, 56]:

𝒗 (𝑙 )
𝑖

= 𝐴𝐺𝐺

(
𝒗 (𝑙−1)
𝑖

,

{
𝒗 (𝑙−1)
𝑗

: 𝑗 ∈ N (𝑖)
})

, (8)

where 𝒗 (𝑙 )
𝑖
∈ R𝑑 denotes node 𝑖’s embedding after 𝑙-th iteration of

graph convolutions, indexed in the input embedding table. N(𝑖)
is the set of 𝑖’s neighbors. Function 𝐴𝐺𝐺 (·, ·) is the information
aggregation function, mainly aiming to transform the center node
feature and the neighbor features.

To further learn the semantic knowledge of PR-Graph, we learn
the representations output from the classic GCN [31], denoted by
𝑬 ′
𝑖
= 𝒗 (𝐿)

𝑖
after 𝐿 layer of graph convolutions. We then complete

the ultimate trajectory representation 𝑬★
𝑖
as: 𝑬★

𝑖
= [𝑬

𝑖
, 𝑬
′
𝑖
] ∈ R2𝑁𝑆 .

4.4 Model Training
Although C-STAR takes variable-length trajectory inputs for repre-
sentation encoding, it is however more efficient and common to use
fixed-size tensors, i.e., batches of trajectory feature lists, for model
training. In this paper, we adopt the uniform sampling to make sure
the sampled trajectories are representative and informative.

Objective Function. We proceed to the optimization paradigm
of Margin Ranking Loss (MRL) with negative sampling:

L𝑀𝑅𝐿 =

𝑀∑︁
𝑖=1

∑︁
G𝑗 ∈Ω+𝑖 , G𝑘 ∈Ω

−
𝑖

max
(
0, 𝐷 (G𝑖 ,G𝑗 ) − 𝐷 (G𝑖 ,G𝑘 ) +𝑚𝑎𝑟𝑔𝑖𝑛

)
, (9)

where Ω+
𝑖
, Ω−

𝑖
are the sets of positive and negative samples as-

sociated with trajectory G𝑖 . Here 𝐷 ( ·, · ) is the Euclidean distance
computed from the trajectory representations, i.e., ∥𝑬★

𝑖
−𝑬★

𝑗
∥2. Then

the complete objective function is formulated as:

L = L𝑀𝑅𝐿 + 𝜇∥Δ∥22 . (10)



∥Δ∥22 is the L2-regularizer of all trainable embeddings and variables
parameterized by hyper-parameter 𝜇 to avoid over-fitting. The
pseudo-codes for training C-STAR are detailed in Algorithm 1.

5 EXPERIMENTS
Our experimental objective is to investigate the effectiveness of
the proposed framework C-STAR in producing high quality em-
beddings serving different down-stream tasks. We propose and
systematically evaluate the model performance on two tasks, both
on Amazon internal datasets and publicly available datasets.

5.1 Experimental Setups
Evaluation Tasks and Metrics. In this work, we propose two
tasks to evaluate the learned trajectory embedding quality. These
tasks are important for customer understanding efforts. Specifically,

• Task 1: Customer Segmentation. The fundamental property
required by customer segmentation is customer-wise similarity
measurement. Thus, we propose this task to evaluate the model
ranking capability, in which given a query customer, the model
seeks to retrieve his/her Top-K most similar customers, based on
their learned trajectory embeddings.
• Task 2: Shopping Trajectory Completion. Assuming the cus-
tomers’ shopping journeys have not yet finished, it aims to com-
plete customers’ trajectories by recommending relevant yet unex-
plored elements. This task is also formulated as Top-K retrieval.

We formulate Task 1 and 2 as ranking towards candidates of
similar/relevant customers and product categories, respectively.
Thus, Recall@K and NDCG@K are utilized as evaluation metrics.

Baselines. We include the following models: (1) shallow neural
models (TPooling and MLP); (2) graph-based models (GCN+, GAT+,
GraphSage+); (3) language-basedmodels (Transformer, Graph Trans-
former); and (4) general deep learning models (DeepSets, PSWE).

• TPooling is a straightforward implementation that aggregates
all element embeddings of each customer trajectory. The pool-
ing strategy could be mean, max, or min. We report the best
performance of these strategies and denote it as TPooling.
• MLP is a fundamental neural network that first concatenates
trajectory element embeddings as input and passes them through
one hidden layer and finally arrives at the output layer.
• GCN [31] is one of the classic graph convolutional networks.
We implement it on PR-Graph to gather information and fur-
ther aggregate trajectory-level embeddings via TPooling (i.e.,
GCN+TPooling) or MLP (i.e., GCN+MLP). We use the notation
GCN+ to denote the one with better metrics (e.g., on Recall@K
and NDCG@K in ranking tasks).
• GAT [56] is the representative graph-based model with the at-
tention mechanism. Similarly, we implement it for PR-Graph in-
formation propagation and summarize trajectory embeddings
with two variant models (i.e., GAT+TPooling and GAT+MLP).
Similarly, GAT+ denotes the better variant.
• GraphSage [23] is the graph convolutional network with the in-
ductive learning setting. Similarly, we have two implementations
with TPooling and MLP, and GraphSage+ is the better one.
• Transformer [55], denoted by TRFM, is another strong baseline
with the self-attention mechanism. In our implementation, we

Table 2: The statistics of Amazon internal datasets.

Training PR-Graph statistics Evaluation
#Instances #Length #Nodes #Edges #Density #Instances #Length

Task 1 100,000 27.516 14,695 416,610 0.0386 1,000,000 29.218
Task 2 100,000 27.481 5,000,000 26.517

Table 3: Results of customer segmentation task (%).

Top-5 Top-10 Top-20 Top-50 Top-100
Metric Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

TPooling 1.30 2.61 2.61 3.88 5.84 5.51 9.58 5.62 15.30 8.76
MLP 1.23 1.39 2.53 1.87 4.55 2.39 8.45 3.31 13.92 7.67
GCN+ 3.48 4.44 5.62 5.33 8.94 7.61 15.62 8.16 16.50 10.72
GAT+ 4.14 5.53 6.82 6.28 9.23 8.36 16.16 8.48 16.89 11.31

GraphSage+ 3.93 4.72 6.29 5.84 9.17 7.82 15.82 8.37 16.74 10.98
TRFM 5.59 8.64 9.52 8.83 12.21 11.05 21.54 15.38 30.53 17.96
GTRFM 5.18 8.37 9.33 8.27 11.26 10.67 20.66 14.83 28.77 17.21
DeepSets 5.77 8.87 9.75 9.11 12.47 11.29 21.96 15.60 31.04 18.17
PSWE 6.19 9.87 11.41 9.94 14.67 13.85 24.19 17.27 33.22 20.57

C-STAR 6.82 10.74 12.40 10.78 16.12 15.29 26.33 19.43 34.87 21.46
% Gain 10.18% 8.81% 8.68% 8.45% 9.88% 10.40% 8.87% 14.88% 9.91% 4.33%

input each customer trajectory as a language sentence to learn
its embedding.
• Graph Transformer [19] is one of state-of-the-art Transformer-
based model that deploys on the graph data. We implement it on
PR-Graphand trajectory data to jointly learn the representations.
We denote it as GTRFM.
• DeepSets [67] is an exemplary deep learning model that is origi-
nally proposed to learn representations for “compound objects”
such as point clouds. In our experiments, it takes all trajectory
units as a set and learns the unified representation while main-
taining the intrinsic semantics of trajectory elements.
• PSWE [43] is the latest state-of-the-art method that subsumes
the learning process under the Wasserstein metric framework.
In this work, we reproduce it to learn the trajectory embeddings.
We exclude early collaborative-filtering-based methods [28, 36,

45] and recent GCN-based recommender models[27, 57, 66]. The
reason is that these methods are transductive, which develops rec-
ommendations only for observed customers, but finds challenges
in generalizing to unseen ones. Note that customer shopping tra-
jectories evolve quickly over time, we therefore require a method
that poses a good capability of doing inductive inference.

5.2 Evaluation on Amazon Datasets
In this section, we provide the empirical model analyses on Amazon
data. For each task, we explain the evaluation protocol followed
by the discussions of experimental results. We report the average
results based on five times of training and evaluation in Tables 3-4,
where the bold and the underlined represent the best- and second-
best-performing cases.

Dataset Statistics. To prevent the risk of data leakage, we split
data separately for different evaluation tasks with their statistics
reported in Table 2. PR-Graph, as the prior knowledge, is universal
throughout all tasks. We use customer engagements for the period
of 28 days whereby the data is fully anonymized.



Table 4: Results of shopping trajectory completion task (%).

Top-5 Top-10 Top-20 Top-50 Top-100
Metric Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

TPooling 5.97 7.31 9.13 8.02 13.71 9.62 22.43 12.36 31.37 14.70
MLP 5.84 7.11 8.78 7.80 13.56 9.37 22.28 12.14 30.96 14.44
GCN+ 6.74 8.35 10.64 9.13 15.25 10.79 25.27 13.59 35.69 15.98
GAT+ 6.99 8.40 11.03 9.44 16.97 11.10 26.16 14.23 36.21 16.76

GraphSage+ 6.73 8.48 10.79 9.26 16.48 11.20 26.11 14.22 36.16 16.74
TRFM 7.26 9.11 11.72 9.85 17.47 11.85 27.66 14.98 37.97 18.15
GTRFM 6.81 8.69 10.83 9.34 16.53 11.18 26.52 14.28 36.84 17.11
DeepSets 6.29 7.60 9.86 8.43 15.01 10.21 24.96 13.32 35.12 15.97
PSWE 7.87 9.27 12.11 10.25 17.87 12.26 28.09 15.23 38.05 18.13

C-STAR 8.05 9.40 12.49 10.31 18.29 12.44 28.65 16.02 38.23 18.38
% Gain 2.29% 1.40% 3.14% 0.59% 2.35% 1.47% 1.99% 5.19% 0.47% 1.27%

5.2.1 Task 1: Customer Segmentation. As mentioned in § 5.1, the
learned embeddings are expected to reflect realistic trajectory simi-
larity, both structurally and semantically. For 1M evaluation data,
we sort out their similar trajectories according to the number of
overlapping trajectory elements; then we compare these ranking
lists with the Top-K results obtained by the learning models.

As reported in Table 3, (1) assembling with TPooling or MLP,
graph-based implementations (i.e., GCN+, GAT+, and GraphSage+)
perform better than these two vanilla baselines, indicating that
graph convolutional operations can effectively extract knowledge
from PR-Graph to boost model performance. (2) Representative lan-
guage models generally underperform state-of-the-art deep learn-
ing models (i.e., DeepSets and PSWE) for trajectory representation
learning. One explanation is that these deep learning methods or-
ganize the trajectory into the set structure, which can well capture
their collective information and thus improve their trajectory-wise
similarity measurement. (3) Our C-STARmodel consistently outper-
forms the second-best model by 8.68%∼10.18% and 4.33%∼14.88%
w.r.t. Recall@K and NDCG@K (with K ranging in {5, 10, 20, 50,
100}). This validates C-STAR’s effectiveness of jointly considering
both the trajectory semantics and trajectory similarity, which not
only enriches the latent semantics of trajectory embeddings but
also well approximates the actual trajectory distribution proximity.

5.2.2 Task 2: Shopping Trajectory Completion. We collect 5M shop-
ping trajectories and randomly hide 20% percent of trajectory ele-
ments; then we employ the trained models to predict the missing
ones for trajectory completion, just like a “Cloze task”.

From Table 4, we have twomajor observations. (1) Different from
the under-performing situation in Task 1, language models, e.g.,
Transformer, work better in Task 2, compared to some recent deep-
learning-based models. The main reason is that, these language
models can well capture the semantic relations between a “trajec-
tory” and its “elements”, similar to the case between a “sentence”
and its “words”. (2) The state-of-the-art model PSWE generally per-
forms the best throughout all competing models; meanwhile, our
proposed model C-STAR further achieves at least 0.47% and 0.59% of
improvements over Recall and NDCG metrics. Additionally, the sta-
ble performance of C-STAR to predict next-20% trajectory elements
also provides the deployment flexibility for bundle recommendation.

5.3 Ablation Studies
We conduct ablation studies and report the results of overlapping
structure similarity and trajectory completion in Table 5.

Table 5: Results of ablation study.

Task 1 Task 2
Recall NDCG Recall NDCG

w/o KE 33.41 (-4.19%) 20.92 (-2.52%) 33.94 (-11.22%) 17.18 (-6.53%)
w/o TSE 22.86 (-34.44%) 14.77 (-31.17%) 32.41 (-15.22%) 16.60 (-9.68%)

Best 34.87 21.46 38.23 18.38

Table 6: Public dataset statistics.

BCrossing Gowalla Pinterest AMZ-Book

#User trajectories 16,411 29,858 55,186 52,643
# Items 36,143 40,919 9,855 91,576

#Avg. trajectory length 35.711 49.272 26.516 56.686
# PR-Graph density 0.000119 0.000127 0.000372 0.0000648

PR-Graph Necessity for Semantics Extraction. We omit
the graph convolutions over PR-Graph and denote the variant as
C-STARw/o KE. Specifically, we remove the representation 𝑬

′
𝑖
in

𝑬★
𝑖
= [𝑬

𝑖
, 𝑬
′
𝑖
]; and, to provide a fair comparison, we expand the

dimensionality of 𝑬
𝑖
to 2𝑁𝑆 . As shown in Table 5, C-STARw/o KE

exhibits a conspicuous performance decay. This not only indicates
the informativeness of PR-Graph in organizing multiple product-
to-product relations at the category-level, but also the usefulness
of graph convolutions for knowledge extraction.

Implementation Effectiveness of TSE Module. Variant C-
STARw/o TSE replaces the algorithmic implementation of Eqn.(7)
by a two-layer of MLP to encode trajectory representations and
measure trajectory distribution similarity. The performance gaps
of these tasks between C-STARw/o TSE and C-STAR prove the effec-
tiveness of our proposed solution, in which we convert the mea-
surement of trajectory-wise similarity to the distribution distance
with the Optimal Transport methodology.

5.4 Evaluation on Public Datasets
Dataset Statistics. We collect four public datasets that are widely-
evaluated [8, 9, 27, 62, 63, 69]. For these datasets, we synthesize
their own “PR-Graph” by creating edges if items are co-purchased
by at least 20 different customers. Dataset statistics are reported in
Table 6.

• BCrossing4 [77] is a public dataset of book ratings in Book-
Crossing Community. To guarantee the dataset quality, we filter
out readers and books with less than five interactions and then
merge each reader’s rated books into a unique trajectory.
• Gowalla5 [27, 57, 58] is the check-in dataset [14] from Gowalla,
where users share their locations by check-in. We directly use
the dataset split by [57] where users and items are selected to
have at least then interactions. We integrate each customer’s all
check-in locations into his/her trajectory.
• Pinterest6 [22] is an implicit feedback dataset for image rec-
ommendation [22]. Each user is associated with his/her own
trajectory towards 9,855 different images.

4https://www.kaggle.com/datasets/ruchi798/bookcrossing-dataset
5https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla
6https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv

https://www.kaggle.com/datasets/ruchi798/bookcrossing-dataset
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla
https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv


Figure 2: Recall@K and NDCG@K are respectively reported in the first and second row (best view in color).

• AMZ-Book7 is the book review dataset between readers and
book trajectories, organized from the book collection of Amazon-
review [26]. We directly use the existing data split from [57],
where each reader and book have at least ten interactions.
Evaluation Results. For these public datasets, we report recent

language- and deep-learning-models with good performance in § 5
as competing methods. The evaluation protocols follow closely to
the experiments with Amazon datasets, unless explicitly specified
otherwise. There are two major observations.

First of all, the findings depicted in Figure 2(a)-(d) provide in-
sights into the performance of various methodologies employed
for the task of customer segmentation. Within this context, deep-
learning-based approaches, including DeepSet and PSWE, demon-
strate a notable advantage over conventional language-based meth-
ods such as Transformer and Graph Transformer. Notably, the
employment of the Wasserstein-metric-based model PSWE yields
even more promising results than DeepSets, reinforcing the supe-
riority of deep-learning-based techniques for this task. Moreover,
it is important to highlight that our model consistently outper-
forms the alternative methodologies across the evaluated public
datasets, showing the efficacy of our proposed method in capturing
trajectory-wise similarity in Customer Segmentation.

Second of all, from Figure 2(e)-(h), we notice that, in concur-
rence with the observations made in Section 5.2.2, it is evident
that conventional language-based models exhibit competitive per-
formance in this specific task. Our proposed model stands out as
the top-performing approach among all the comparative models,

7https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book

with the exception of the Gowalla dataset where it ranks as the
second-best performer. This consistent demonstration of superior
performance across multiple datasets reinforces the effectiveness
of our model in tackling the shopping trajectory completion task.
Moreover, considering the superior performance in Customer Seg-
mentation, our model essential exhibits a remarkable balance and
adaptability across both tasks evaluated in this work.

6 CONCLUSION AND FUTUREWORK
In this paper, we present an end-to-end framework for customer
shopping trajectory representation learning, namely C-STAR. The
proposed methodology jointly captures the trajectory distribution
similarity and the trajectory topological semantics, enriching the
trajectory representations in a coarse-to-fine learning paradigm.
The empirical results on both Amazon internal data and public
datasets not only illustrate the usefulness of learned embeddings
over two customer-centric evaluation tasks, but they also justify
the effectiveness of all proposed modules.

As for future work, we plan to investigate two major directions.
(1) It is worth integrating temporal information for model improve-
ment to forecast the future trajectory evolution. Specifically, we
may need to quantitatively integrate the appearance timestamp of
each trajectory element, which is more complicated to deal with,
as the model needs to understand and utilize the signals behind
different time gaps. (2) In practice, trajectory data is continuously
evolving. Instead of re-training the model, streaming methods via
Continual Learning [49] can be more efficient to capture new emerg-
ing patterns while also maintaining the early model knowledge,
which is particularly efficacious for large-scale settings.

https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book
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