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ABSTRACT
Classification in imbalanced data, where the majority class has a
much larger representation than the minority class, has been a signif-
icant topic in recent decades. Two popular approaches for handling
this issue are (1) rebalancing the sizes of classes through reweight-
ing, resampling, or synthetic nodes generating, and (2) focusing on
the data points that are hard to classify to enhance the classifier per-
formance. In graphical data, several methods, such as GraphSMOTE
[35], and GraphENS [23], from the first type have been developed
recently for class-imbalanced node classification tasks, but few adap-
tations of the second approach have been proposed. In response to
this gap , we present a novel multi-stage boosting framework inspired
by the second approach. In particular, the framework proposed in
this research paper jointly generates the topological structure and
features of synthetic nodes by minimizing the distance of synthetic
nodes and misclassified nodes from previous training stages. Our
experiments on class-imbalanced graphs show that our novel frame-
work outperforms standard graph neural networks. Furthermore,
our framework can be combined with existing methods (such as
GraphENS) resulting in further performance enhancements.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifica-
tion; Neural networks.
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1 INTRODUCTION
In the traditional classification tasks with imbalanced data, two
major branches of popular methods are applied to address the issues

*Both authors contributed equally to this research.
†Corresponding author.

Conference acronym ’XX, August 06–10, 2023, Long Beach, CA
© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Long Beach ’23:
ACM Symposium on Neural Gaze Detection, August 06–10, 2023, Long Beach, CA,
https://doi.org/XXXXXXX.XXXXXXX.

caused by imbalance. The first branch is the methods that rebalance
the training set by reweighting different classes in the loss function,
generating synthetic data from minority classes, or applying other
sampling schemes. For instance, oversampling methods create more
data from minority classes by sampling and interpolation [3]. Under-
sampling methods, on the other hand, downsize the majority class
training data through some selection procedure [16]. Another branch
of methods utilizes the subset of training data that is more easily to be
misclassified and assigns more weights to such data points, such as
focal loss [17], Adaboost [8] and ADASYN [12]. For instance, focal
loss differs from classic cross-entropy loss by adding a shrinking
factor to the logarithm terms to down-weight the well-classified data
points, which significantly enhances the accuracy of object detection
tasks.

Node classification is a classic task in large-scale graph analy-
sis with wide applications. The objective of node classification is
to label the nodes of a graph into different classes. To solve such
tasks, various graph neural networks (GNNs) have been developed
using the idea of convolutional neural networks (CNN) to implic-
itly propagate the information of the labeled nodes to unlabeled
nodes through the linkage between nodes [9, 15, 32, 34]. These
convolution-based graph neural networks have achieved superior
performance on multiple benchmark datasets [33].

Despite the high performance of GNNs in standard node clas-
sification tasks, classical GNNs such as GCN[15], GAT [32], or
GraphSage [9] cannot be well generalized into the situation of clas-
sification in class-imbalanced graphs. In real-world networks, im-
balanced node classes have been observed in many cases, such as
chemical compound graphs [22] and fake account detection graphs
[19]. When applied to such datasets, GNN may suffer from bias
towards the majority class in the training dataset. The complex
topological structure of graphs adds further complication to such
situations. The techniques of handling imbalanced data in traditional
classifications have been introduced to graphs, where GraphSMOTE
by [35] and GraphENS by [23] are variants of rebalancing methods
that are tailored to class-imbalanced node classification problems.
In particular, GraphENS is the state-of-the-art (SOTA) method han-
dling node classification in imbalanced graphs so far. On the other
hand, Boost-GNN [29] adapts the method of Adaboost (which be-
longs to the second branch of methods) to GNN by reweighting the
misclassified nodes. However, Boost-GNN cannot be applied simul-
taneously with other rebalance-based methods such as GraphENS or
oversampling.

In this work, we propose a multi-stage boosting framework in
the graph (GraphBoost) by generating synthetic nodes similar to the
misclassified nodes in the training set from the previous stage. Our
method can be directly applied to vanilla GNN models or combined
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with existing synthetic node generation methods on imbalanced data
such as GraphENS. To our best knowledge, our work is the first to
leverage the misclassified nodes and synthetic node generation in
imbalanced node classification tasks.

There are two challenges in constructing a general framework:
first, the attributed graph data are non-Euclidean whose distribution
contains information on graph topology structure as well as the
attributes of nodes. Hence, it is non-trivial to construct the generator
to model this distribution. Second, even if the generator can model
the distribution of feature and topological structure in a graph, the
generator should be further trained properly to boost the performance
of the classifier. A poor-quality generator would introduce noises to
the existing graph and adversely affect the classifier performance.
To address the first challenge, the topological structure is captured
by graph embedding methods that can restore the adjacency matrix
of the original graph. The graph embedding vectors of each node
are then concatenated with node attributes, where a generator will
generate the joint distribution of them. Details of graph embedding
methods and generating adjacency information of synthetic nodes
can be found in Section 3.3 and Section 4.1 respectively. To handle
the second challenge, we adapt the semi-GAN framework [26],
where we convert the 𝑀-class classification task into solving a (𝑀 +
1)-class problem where the synthetic (𝑀+1)-class is generated by the
generator. To address the training convergence issue in generative
adversarial network (GAN), we use the variational auto-encoder
(VAE) by [14] as the generator. [6] provides a theoretical insight that
the generated data in semi-GAN are able to boost the performance
of the classifier in a general classification setting if the generated
data fall on the complementary part of the existing classes. In our
framework, the generated data mimic the distribution of nodes that
are difficult to be classified, which can be regarded as complementary
parts. An illustration of our generated nodes is in Figure 1.

:Node Class 0 :Node Class 1 : Misclassified Nodes in Class 0,1

:Generated Node:Original Edge :Generated Edge

Figure 1: Illustration of the proposed framework GraphBoost.
Two classes in the graph, orange nodes denote the majority
class 0 and blue nodes represent the minority class 1. In the
previous stage, two nodes are misclassified. In the following
stage, synthetic nodes are generated by mimicing the features
and topological structure of misclassified nodes and labeled as
class 2. GNN classifier is updated by classifying all classes.

Our contribution can then be summarized into three folds. First,
we propose a novel framework (GraphBoost) motivated by Adaboost

and focal loss to generate synthetic nodes similar to nodes that are
easy to be misclassified to improve baseline classifier accuracy on
imbalanced node classifications. Second, we propose to use an adver-
sarial learning framework to generate synthetic nodes. In particular,
the generative model in our framework generates nodes labeled as
𝑀+1-th class in the data, where the feature part and link part of these
synthetic nodes are generated jointly. This further extends the appli-
cation of generative models to synthetic nodes generation in graphs.
Third, in the setting of class imbalanced node classification, we show
that using our boosting framework can obtain improvement over the
performance of vanilla GNN classifiers. Furthermore, our framework
can be applied simultaneously with existing SOTA method (such as
GraphENS) to achieve further performance enhancement.

2 RELATED WORK
2.1 Methods for Classification on Imbalanced Data
Many methods have been proposed to handle classification tasks
in class-imbalanced setting. One popular branch of methods is the
approaches that rebalance the training datasets. Some of the meth-
ods directly rebalance the training data through sampling or syn-
thetic data generation, while some other methods [5, 13, 31] achieve
the same goal by reweighting the loss function. Resampling meth-
ods include oversampling, undersampling and combination of both
schemes [16, 18, 30]. Synthetic data generation methods include
SMOTE [3],SMOTEBoost [4], Borderline-SMOTE[11], etc. An-
other branch of methods focus on using data points that are difficult
to be classified to enhance classification performance in imbalanced
data. For instance, Adaboost [8] and its variants [7, see, e.g.] increase
the weight of misclassified data points in a multi-stage procedure
and obtain an voted ensemble of classifiers from all the stages. Focal
loss [17], on the hand, alters the classical cross-entropy loss by re-
ducing the weight of easy-to-classify data points and assigning more
weight to the difficult, misclassified data, which is more likely to
prevent over-fitting compared to cross-entropy loss [20]. ADASYN
[12] differs from aforementioned methods by directly generating
synthetic data of data points that are from minority classes and diffi-
cult to learn, where the number of nearest neighbors belonging to
the majority class serves as a measure for classification difficulty.
All of these methods are originally proposed on datasets not directly
related to graphs.

2.2 Node classification Methods in
Class-imbalanced Graphs

In class-imbalanced node classification tasks, classical GNNs such
as GCN[15], GAT [32] or GraphSage [9] suffer from the bias to-
wards the majority class, and may perform poorly on nodes from
minority groups. Thus, methods from classification on imbalanced
data are adapted to graphs. Similar to the synthetic data generation
methods, GraphSMOTE[35] creates nodes from minority classes
based on the nearest neighbors from the embedding space of GNN,
where connections of generated nodes are created with an edge
predictor. ImGAGN [25] uses GAN to generate nodes from minor-
ity classes to rebalance the data. In GraphENS [23], the neighbor
memorization issue of applying traditional oversampling methods
in graphs is identified and the synthetic nodes are created to reduce
overfitting towards nodes in minority classes. The aforementioned
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methods adapts rebalancing methods to node classification setting
and GraphENS is the SOTA method among this class. On the other
hand, Boost-GNN [29] introduces the methods that use misclassi-
fied nodes to class-imbalanced graphs. In a multi-stage procedure
similar to Ada-boost, the misclassified nodes are assigned with more
weights in loss and the ensembled vote of GNNs from all stages
are provided. However, this method can not be directly combined
with methods above. On the contrary, our model (GraphBoost) can
not only be applied to vanilla GNNs but also be used together with
synthetic node generating methods such as GraphENS.

3 PRELIMINARY
We first introduce the notation of graphs. Let G = (𝑉 , 𝐸) denote a
graph, where𝑉 is the set of nodes with |𝑉 | = 𝑛 and 𝐸 ⊂ 𝑉 ×𝑉 is a set
of edges with |𝐸 | =𝑚. The adjacency matrix A ∈ R |𝑉 |× |𝑉 | is defined
as𝐴𝑖 𝑗 = 1 if node 𝑣𝑖 and 𝑣 𝑗 is connected, otherwise𝐴𝑖 𝑗 = 0. Suppose
each node 𝑣𝑖 has a 𝑑-dimensional feature x𝑖 ∈ R𝑑 and a single value
label 𝑦𝑖 ∈ {1, 2, .., 𝑀}. The matrix X = [x𝑖 ]𝑣𝑖 ∈𝑉 ∈ R𝑛×𝑑 contains
the features of all nodes. Denote𝑉 L as the set of training data where
the labels of nodes are known. The size of each class in 𝑉 L can be
highly imbalanced. The objective of node classification is to find
out the labels {𝑦 𝑗 } of test set 𝑉U given adjacency matrix A, feature
matrix and labels of the training set.

3.1 Convolution-based Graph Neural Network
Classifier

Based on the Laplacian smoothing, the convolution-based GNN
models propagate the information of node features across the nodes’
neighbors in each layer. Specifically, in GCN, the layer-wise propa-
gation rule can be defined as follows:

H(𝑙+1) = 𝜎 (D−1AH(𝑙 )W(𝑙 ) + b(𝑙 ) ), 𝑙 = 0, 1, 2.., 𝐿 − 1 (1)

where W(𝑙 ) and b(𝑙 ) are layer-specific trainable weight matrix and
bias, respectively. 𝜎 (·) is an activation function. D is the diagonal
degree matrix with 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . Hence, D−1A represents normal-

ization of adjacency matrix A. The initial layer H(0) is the feature
matrix X. The final layer H(𝐿) followed by a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 layer can be
viewed as the prediction of one-hot representation for the true label
y, which is the output of the neural network.

3.2 Framework of Semi-GAN
In semi-GAN, the classifier𝐶 and generator𝐺 play a non-cooperative
game, where the classifier aims to classify the unlabeled data as well
as distinguish the generated data from the real data, while the genera-
tor attempts to match the features of generated data with the features
of real data. Therefore, the objective function for the classifier can
be divided into two parts [26]. The first part is the supervised loss
function

L𝑠𝑢𝑝 = −E𝑣,𝑦∼𝑝
𝑉L log 𝑃𝐶 (𝑦 |𝑣,𝑦 ≤ 𝑀), (2)

which is the log probability of the node label predictions on the real
nodes in training data. The second part is the loss function for differ-
entiating the real nodes and generated nodes L𝑔𝑒𝑛 = −E𝑣∼𝑝

𝑉L log[1−
𝑃𝐶 (𝑦 = 𝑀 + 1|𝑣)] − E𝑣∼𝑝

𝑉𝐺 log 𝑃𝐶 (𝑦 = 𝑀 + 1|𝑣), which is the log
probability of the (M + 1)-th class for real nodes 𝑉 L and generated

nodes 𝑉𝐺 . The classifier C can be trained by minimizing the total
loss function

L𝐶 = L𝑠𝑢𝑝 + L𝑔𝑒𝑛 . (3)

For the objective function of generator, [26] found minimizing fea-
ture matching loss in Equation 4 achieved superior performance in
practice

L𝐺 = | |E𝑣∼𝑝
𝑉L (f (𝑣)) − Ez∼𝑝z (z) (f (𝐺 (z))) | |22, (4)

where the feature matching function f (·) maps the input into a feature
space, and z ∼ 𝑝z (z) is noise drawn from some given distributions.
[6] provided a theoretical justification that complementary generator
G was able to boost the performance of classifier C.

3.3 Graph Embedding Methods
Graph embedding matches complex graph information into low di-
mensional vector space, which is applied in many machine learning
tasks with graphs. There are three types of graph embedding meth-
ods: random walk-based methods, matrix factorization-based meth-
ods, and deep learning model-based methods[10, 21]. The graph
embedding methods represent node 𝑣𝑖 with vector 𝑢𝑖 ∈ R𝑑𝑢 and the
matrix U ∈ R𝑛×𝑑𝑢 contains the embedded information for the whole
graph. In this paper, we use the embedding information U of the
original graph to generate the adjacency information of synthetic
nodes. Therefore, the factorization-based methods such as GraRep
[2], Graph Factorization [1] , and Adjacency/Laplacian Spectral Em-
bedding [24] are considered in this paper, as adjacency information
can be recovered using the node embedding obtained by these meth-
ods. Among these methods, Laplacian Spectral Embedding (LSE)
is selected, as it is efficient in terms of computing time and enjoys
highest accuracy when recovering the original adjacency matrix A in
our setting. LSE is based on the eigen decomposition of the normal-
ized Laplacian adjacency matrix L(A) = D−1/2AD−1/2 [24]. L(A)
can be decomposed as L(A) = WΣW𝑇 , where W is the matrix of
eigenvectors and Σ contains the eigenvalues. The embedding matrix

U = W𝑑𝑢 Σ
1
2
𝑑𝑢

can then be obtained where the embedding dimension
𝑑𝑢 corresponds to the number of top eigenvalues selected. Tuning of
𝑑𝑢 is presented in Section B of Appendix.

4 FRAMEWORK OF GRAPHBOOST
To improve the performance of GNN on class-imbalanced node
classification tasks, we propose the following multi-stage boost
node generation framework that utilizes misclassified nodes during
training. In this framework, we first discuss the generator of synthetic
nodes and the construction of classifiers. Then we formally present
the main algorithm. Furthermore, we discuss how this boosting node-
generation framework can be incorporated with existing synthetic
node-generating methods (e.g. GraphENS [23]) in imbalanced data.

4.1 Construction of the Generator
The generator G generates a batch of 𝐵 fake nodes 𝑉𝐺 = {𝑣 𝑗 }𝐵𝑗=1 by

creating the feature matrix XG ∈ R𝐵×𝑑 and the augmented adjacency

matrix Ã =

[
A00 A𝑇10
A10 A11

]
∈ R(𝑛+𝐵)×(𝑛+𝐵) . Here 𝑥 𝑗 is the feature

vector corresponding to the 𝑗-th fake node. The submatrix A00 is the
original adjacency matrix of the existing nodes 𝑉 . A10 represents
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the adjacency relations between the real nodes and fake nodes, with
Ã𝑖, 𝑗 = 1 indicating that the fake node 𝑣 𝑗 is connected with the real
node 𝑣𝑖 and Ã𝑖, 𝑗 = 0 otherwise. A11 is the adjacency matrix within
the 𝐵 generated fake nodes.

For a single fake node 𝑣 𝑗 among {𝑣 𝑗 }𝐵𝑗=1, its distribution 𝑝𝐺 (𝑣 𝑗 )
can be represented as the joint distribution of the corresponding
feature, embedding vector, and adjacency relation 𝑝𝐺 (x𝑗 , u𝑗 , a𝑗 ),
where a𝑗 = Ã𝑗,:. The feature x𝑗 will be generated by the distribution
𝑝𝐺1 (x𝑗 ). To generate a𝑗 , we will first apply the LSE embedding
in Section 3.3, and embed the adjacency matrix of original graph
A00 by U ∈ R𝑛×𝑑𝑢 . Then the embedded vector u𝑗 for the fake
node 𝑗 can be generated by 𝑝𝐺2 (u𝑗 ). Note that for the terms 𝑎𝑖, 𝑗
in A10 and A11, 𝑎𝑖, 𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 = u𝑇

𝑖
u𝑗 ). That is, the links

within the fake nodes, together with the links between the existing
nodes and fake nodes are constructed based on the cross-product of
the embedding vectors. The distribution for generated node 𝑝𝐺 (𝑣0)
can be denoted by 𝑝𝐺 (𝑣0) = 𝑝𝐺 (x0, u0, a0) = 𝑝𝐺 (x0, u0)𝑝 (a0 |u0).
Hence, the combined adjacency matrix can be represented in the
following expression

Ã =

[
A00 A𝑇10
A10 A11

]
∈ R(𝑛+𝐵)×(𝑛+𝐵) , (5)

and the combined feature vector is

X̃ =

[
X

X𝐺

]
∈ R(𝑛+𝐵)×𝑑 .

The diagonal degree matrix D̃ ∈ R(𝑛+𝐵)×(𝑛+𝐵) can be denoted as[
D∗ 0
0 D𝐵

]
, where D∗ ∈ R𝑛×𝑛 with 𝐷∗,𝑖𝑖 =

∑
𝑗 𝐴00, 𝑗𝑖 +

∑
𝑏 𝐴10,𝑏𝑖

and D𝐵 ∈ R𝐵×𝐵 with 𝐷𝐵,𝑖𝑖 =
∑
𝑏 𝐴11,𝑖𝑏 +

∑
𝑗 𝐴10,𝑖 𝑗 .

For the generated nodes, the distribution of their feature compo-
nent X and topological embedding U, 𝑝𝐺 , is obtained as a result of
training the generator component, such that their distribution will
be close to the feature and embedding of some target set of nodes.
The concatenated feature and embedding of the target nodes are then
denoted as E𝑡𝑎𝑟𝑔𝑒𝑡 =

[
X𝑡𝑎𝑟𝑔𝑒𝑡 U𝑡𝑎𝑟𝑔𝑒𝑡

]
with distribution 𝑝E . The

objective of the generator is to produce synthetic nodes close to the
features and connection relations of target nodes, E𝑡𝑎𝑟𝑔𝑒𝑡 , which is
achieved by minimizing the loss of generator, 𝐿𝐺 . For 𝐿𝐺 , when we
use VAE as the generator, it takes the form of

𝐿𝐺 (𝜃1, 𝜃2) = −𝐸𝑧∼𝑞𝜃2 ,𝑥∼𝑝E [𝑙𝑜𝑔𝑝𝜃2 (𝑥 |𝑧)] + 𝐷𝐾𝐿 (𝑞𝜃1 (𝑧 |𝑥) | |𝑝𝜃2 (𝑧)),

where 𝜃1 represents the parameters of encoder, 𝜃2 represents the
parameters of decoder, 𝑧 is the vectors generated by decoder and 𝑥
is the target data. When we use some generators other than VAE, 𝐿𝐺
may take different forms such as feature matching loss,

𝐸𝑥∼𝑝E 𝑓 (𝑥) − 𝐸𝑧∼𝑝𝑧 𝑓 (𝐺 (𝑧))



 ,
as is in [26]. After training generator with 𝐿𝐺 , 𝐵 synthetic nodes are
generated from it.

4.2 Analysis of Classifier in Boosting Stages
For classifier of nodes, we adopt the convolution-based GNN, such
as GCN, GAT [32] or SAGE [9] as the classifier. The classifier is
applied to the enlarged graph G̃ = [X̃, Ã] to obtain the prediction ỹ
of nodes 𝑉 ∪𝑉𝐺 .

Considering the layer-wise propagation of GCN (Equation 1) as
the classifier, the propagation rule can be denoted as

H̃(𝑙+1) = 𝜎 (D̃−1ÃH̃(𝑙 )W(𝑙 ) + b̃(𝑙 ) )

= 𝜎 (
[
D−1
∗ 0
0 D−1

𝐵

] [
A00 A𝑇10
A10 A11

] [
H(𝑙 )
∗

H(𝑙 )
0

]
W(𝑙 ) +

[
b(𝑙 )

b(𝑙 )
𝐵

]
)

= 𝜎 (
[
D−1
∗ A00H(𝑙 )

∗ + D−1
∗ A𝑇10H(𝑙 )

0
D−1
𝐵

A10H(𝑙 )
∗ + D−1

𝐵
A11H(𝑙 )

0

]
W(𝑙 ) +

[
b(𝑙 )

b(𝑙 )
𝐵

]
)

= 𝜎 (
[

D−1
∗ A00H(𝑙 )

∗ W(𝑙 ) + b(𝑙 )
∗

(D−1
𝐵

A10H(𝑙 )
∗ + D−1

𝐵
A11H(𝑙 )

0 )W(𝑙 ) + b(𝑙 )
𝐵

]
) =

[
H(𝑙+1)
∗

H(𝑙+1)
0

]
,

where the first layer is chosen as the enlarged feature matrix
H̃(0) = X̃. Bias vector b̃(𝑙 ) has dimension (𝑛 + 𝐵) which is denoted
as [b(𝑙 )𝑇 , b(𝑙 )𝑇

𝐵
]𝑇 . We denote b(𝑙 )

∗ = D−1
∗ A𝑇10H(𝑙 )

0 W(𝑙 ) + b(𝑙 ) to
make the format clear. From the formula of H̃(𝑙+1) , we know the
layer propagation of real nodes (first n rows) follows the same format
as the GCN layer propagation in Equation 1.

For the last layer H̃(𝐿) ∈ R(𝑛+𝐵)×𝑀 , we adopt the strategy in [26]
to obtain the (𝑀 + 1) class label ỹ by

ỹ = 𝑠𝑜 𝑓 𝑡 max(H̃(𝐿) | |0(𝑛+𝐵)×1), (6)

where | | denotes concatenation and 0(𝑛+𝐵)×1 ∈ R(𝑛+𝐵)×1 is a zero
matrix. The loss function for the classifier in our framework follows
the same format in Equation 3.

4.3 Improvement Using Misclassified Nodes
Motivated by the boosting methods such as Adaboost, we propose a
𝐾-stage training framework for both the classifier and the generator.
In stage 𝑘 , we find out the nodes in training sets that are misclassified
by the classifier and set those nodes as target nodes for generators.
In stage 𝑘 + 1, the generator will generate fake nodes with features
and embeddings close to those misclassified nodes in training set.

In this framework, training of the classifier in the first stage is
the same as the training process of vanilla GNN, where parameters
of GNN are updated to minimize the loss function in equation 2.
Then the misclassified nodes of this GNN in the training set will be
identified and set as target nodes for the generator in the next stage.
In stage 𝑘 ≥ 2, the generator is trained based on the target nodes
with 𝐿𝐺 . During each epoch of stage 𝑘 , it will produce 𝐵 fake nodes.
Those synthetic nodes are then labeled as class 𝑀 + 1 and added
to the training set. The GNN from the previous stage will then be
trained on the updated training data with loss function in equation 3.

During this process, the GNN and its validation accuracy of
each stage will be stored. In stage 𝑘, the aggregated prediction of
GNN in stage 1 to 𝑘 will be calculated with voting weight equal to
the validation accuracy. Thus, we can obtain testing accuracy and
validating accuracy for the ensembled model in each stage. After
training the classifier in stage 𝐾 , the prediction of the ensembled
model with the highest validation score will be returned as the output.

4.4 Combine with Other Synthetic Node Generator
Our framework can also be combined with other synthetic node
generators in class imbalanced graphs, such as GraphENS [23].
Suppose other generators 𝐺𝑜𝑡ℎ𝑒𝑟 (e.g., GraphENS) generate 𝐵0 syn-
thetic nodes. In this case, the adjacency matrix would be Ã0 =



GraphBoost: Adaptive Boosting Node Generation for Class-Imbalanced Graphs Conference acronym ’XX, August 06–10, 2023, Long Beach, CA[
A00 A01
A10 A11

]
∈ R(𝑛+𝐵0 )×(𝑛+𝐵0 ) , where A01,A11,A11 correspond to

synthetic nodes and links generated by other methods. Note that the
topological structure in A01,A11,A11 can be updated dynamically
through the training process (see e.g. in GraphENS). Thus, the em-
bedding of Ã0 keeps changing and learning the embedding of whole
matrix Ã0 may cause converging issue for the generative models.
Therefore, for synthetic link generating, we use the the LSE embed-
ding U of the original graph A00 rather than Ã0, and the generated
fake nodes by our model will only be linked with the original nodes
in A00 based on generated embedding vectors. Our generator 𝐺 will
then be trained in the same way based on loss 𝐿𝐺 and generate 𝐵
fake nodes The augmented adjacency matrix will then be

Ã =


A00 A01 A𝑇20
A10 A11 0
A20 0 A22

 ∈ R(𝑛+𝐵0+𝐵)×(𝑛+𝐵0+𝐵) . (7)

The generated nodes by other generators and ours are supplementary
to each other, each providing certain performance boost on the
vanilla GNN. This algorithm is formally presented in Algorithm 1.

5 EXPERIMENTS
5.1 Datasets
The datasets in our experiment are based on the three standard
citation network benchmark datasets - Cora, Citeseer, and Pubmed
[27]. We closely follow the settings in Park et al. [23] to transfer
the original training part of the datasets into imbalanced version
of Cora-LT, Citeseer-LT, and Pubmed-LT, where the ratio of the
majority class in the training sets to the minority class is 100. These
imbalanced citation network datasets can mirror real-world academic
scenarios, where some popular or well-established research fields
gather a substantial amount of publications, while some emerging
or specialized research domains attract a much smaller volume of
papers. Therefore, node classification on these imbalanced citation
network datasets is not only crucial and but also highly relevant to
actual situations in academia. Figure 3 in Appendix A illustrates the
distribution of class sizes in the three datasets.

5.2 Experiment Setup and Result
Our goal in this experiment is to demonstrate that using our boosting
framework to create synthetic nodes can improve the performance of
convolution-based GNNs on the imbalanced datasets in Section 5.1.
Furthermore, when using our method in conjunction with GraphENS
(SOTA), further improvement on accuracy can be achieved.

For the classifier component, three widely used convolution-based
GNNs, GCN, GAT, and SAGE are selected in our framework. Apart
from the three vanilla GNN models, GraphENS is also added as
the baseline on top of those GNNs. For GraphENS, the scale of
upsampling is set to be 1, as is recommended by Park et al. [23].
That is, the minority class will be upsampled to reach the size of
the majority class in training data. When the baseline model is a
vanilla GNN, the generated boosting nodes are directly added to the
original graphs. When the baseline model is GNN combined with
GraphENS, the boosting nodes will be added together with synthetic
nodes provided by GraphENS, as is stated in Section 4. Results
of other baseline methods designed for imbalanced graphs such as

GraphSMOTE [35] and DR-GCN[28] on these three imbalanced
datasets are also added from Park et al. [23].

For the generator in Algorithm 1, we use VAE by Kingma and
Welling [14]. For both encoder and decoder, we use fully connected
Rectified Linear Unit (ReLU) network with 1 hidden layer of width
128. The dimension of latent vector sampled from decoder is 64.
In each stage, the VAE is trained with 2500 epochs to learn the
feature/embedding of misclassified nodes in the training set.

To ensure fair comparison, the total number of training epochs
for GNN in both baseline methods and our model are set to be
2000. In particular, when applying our 𝐾-stage training framework,
the number of training epochs in the first stage is set to be 𝑇𝑐,1 =

2000 −∑𝐾
𝑘=2𝑇𝑐,𝑘 and the training epoch numbers in the following

𝐾 − 1 stages for boosting are 𝑇𝑐,𝑘 . For the hyper-parameters in our
framework, such as the number of synthetic nodes 𝐵, number of
boost stages 𝐾 , and epoch number 𝑇𝑐,𝑘 of boost stages 𝑘 ≥ 2, they
can be tuned based on the validation accuracy. In particular, 𝐵 is
selected among 50, 100, 150, · · · , 800 (with ablation study in Section
5.3), 𝐾 is selected among 2, 3, 4, 5 and𝑇𝑐,𝑘 is selected from 25, 50, 75.

For the implementation of vanilla GNNs and GraphENS on Cora-
LT, Citeseer-LT, and Pubmed-LT, we use the code provided by Park
et al. [23]. Consistent with their study, we choose the layer number
of the GNN from the set {1, 2, 3} and choose the layer width of GNN
from {64, 128, 256} during our experiments. For different combina-
tion of GNN types and datasets, the specific layer number and width
of GNN are selected from the sets above such that the performance
of vanilla GNN or GraphENS reported in Park et al. [23] can be
achieved. The outcomes of different method combinations are dis-
played in Table 1. This table includes three performance metrics:
the accuracy score, the balanced accuracy score (the average of true
positive rate of each class), and the average F1 score (the average of
F1 score of each class). From Table 1, it is shown that our proposed
method outperforms vanilla GNN in terms of accuracy score (Acc)
on most dataset-GNN combinations. Furthermore, when our model
is combined with GraphENS, the accuracy (Acc) of GraphENS can
be further enhanced.

5.3 Ablation Study on Synthetic Nodes
In this section, we further study how the generated nodes affect
the performance of our framework. We first conduct an experiment
where the VAE generator is replaced by a white noise placeholder,
such that features of synthetic nodes are white noise vectors from
uniform distribution and the edges of generated nodes are randomly
generated based on the edge density in original graph. The accu-
racy of this modified model combined with GraphENS and GCN
on Cora/CiteSeer/PubMed are 77.66(0.10)%, 66.55(0.17)% and
78.28(0.27)%, respectively, which are worse than the results ob-
tained by our proposed model (77.98 (0.08)%, 66.84 (0.18)% and
79.78 (0.24)%) in Table 1 . These results demonstrate the importance
of the generating nodes close to the misclassified nodes.

In another study, we vary the batch size 𝐵 in {100, 200, · · · , 700, 800}
on Cora and PubMed for GraphBoost- GraphENS with SAGE. The
accuracy of our proposed framework with respect to a different
choice of 𝐵 is reported in Figure 2. It shows the importance of batch
size selection and that generating moderate-size of synthetic nodes
can achieve the best performance in terms of accuracy.
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Table 1: Summary of results in terms of classification accuracy score (Acc), balanced accuracy score (Bacc) and average F1 score (F1)
of Cora-LT, CiteSeer-LT and Pubmed-LT. The baseline results of Vanilla GNN, DR-GCN, GraphSMOTE, and GraphENS are from
Table 1 in Park et al. [23]. “GraphBoost-” represents the baseline method combined with our node generating framework. In each
combination of GNN and dataset, the best result is highlighted as bold. All the GraphBoost- results are obtained by averaging over 5
repetitions, with standard error presented in the following parentheses.

Dataset Cora-LT CiteSeer-LT PubMed-LT
Method Acc Bacc F1 Acc Bacc F1 Acc Bacc F1

G
C

N

Vanilla 73.66 (0.28) 62.72 (0.39) 63.70 (0.43) 53.90 (0.70) 47.32 (0.61) 43.00 (0.70) 70.76 (0.74) 57.56 (0.59) 51.88 (0.53)
GraphBoost-Vanilla 73.98 (0.33) 63.83 ( 0.77) 64.30 ( 0.58) 56.62 ( 0.70) 49.85 ( 0.68) 45.61 ( 0.87) 71.02 (0.34) 57.77 (0.27) 52.16 (0.21)
DR-GCN 73.90 (0.29) 64.30 (0.39) 63.10 (0.57) 56.18 (1.10) 49.57 (1.08) 44.98 (1.29) 72.38 (0.19) 58.86 (0.15) 53.05 (0.13)
GraphSMOTE 76.76 (0.31) 69.31 (0.37) 70.21 (0.64) 62.58 (0.30) 55.94 (0.34) 54.09 (0.37) 75.98 (0.22) 70.96 (0.36) 71.85 (0.32)
GraphENS 77.76 (0.09) 72.94 (0.15) 73.13 (0.11) 66.92 (0.21) 60.19 (0.21) 58.67 (0.25) 78.12 (0.06) 74.13 (0.22) 74.58 (0.13)
GraphBoost-GraphENS 77.98 (0.08) 72.60 (0.12) 72.97 (0.11) 66.84 (0.18) 60.16 (0.17) 58.74 (0.16) 79.78 (0.24) 77.19 (0.42) 77.39 (0.34)

G
A

T

Vanilla 73.60 (0.26) 62.75 (0.37) 63.53 (0.35) 56.76 (0.39) 50.15 (0.34) 46.59 (0.44) 71.26 (0.77) 58.86 (0.82) 54.91(1.12)
GraphBoost-Vanilla 74.02 ( 0.27) 64.90 ( 0.56) 64.61 ( 0.68) 56.18 ( 0.36) 49.71 ( 0.35) 46.43 ( 0.46) 70.84 (0.46) 58.28 (0.50) 54.00 (0.78)
DR-GCN 74.42 (0.55) 64.17 (1.00) 64.20 (0.67) 56.74 (0.74) 50.02 (0.75) 45.82 (1.03) 71.52 (0.25) 59.18 (1.06) 54.88 (2.33)
GraphSMOTE 76.92 (0.31) 70.03 (0.51) 70.47 (0.55) 64.04 (0.38) 57.33 (0.39) 55.43 (0.49) 77.12 (0.49) 73.59 (1.16) 74.40 (0.72)
GraphENS 78.10 (0.13) 73.45 (0.19) 73.48 (0.19) 66.90 (0.29) 60.20 (0.30) 58.70 (0.26) 78.24 (0.15) 74.27 (0.35) 74.68 (0.30)
GraphBoost-GraphENS 78.72 (0.23) 73.03 (0.25) 73.37 (0.32) 67.30 (0.41) 60.59 (0.39) 59.02 (0.40) 78.46 (0.12) 74.78 (0.14) 75.21 (0.12)

SA
G

E

Vanilla 72.08 (0.53) 61.97 (0.67) 61.97 (0.75) 50.76 (0.46) 44.56 (0.49) 40.43 (0.93) 64.54 (0.35) 53.07 (0.55) 48.80 (1.13)
GraphBoost-Vanilla 72.40 ( 0.52) 61.73 ( 0.69) 61.70 ( 0.72) 50.98 ( 0.30) 44.72 ( 0.24) 40.80 ( 0.23) 66.04 (0.96) 54.40 (1.05) 50.23 (1.61)
DR-GCN 73.28 (0.46) 63.32 (0.68) 62.95 (1.12) 50.80 (0.50) 44.51 (0.41) 39.02 (0.65) 64.90 (0.52) 52.84 (0.42) 47.56 (0.43)
GraphSMOTE 74.34 (0.30) 64.76 (0.49) 65.88 (0.50) 58.98 (0.39) 52.11 (0.38) 50.27 (0.74) 70.02 (0.21) 63.04 (0.67) 63.43 (0.54)
GraphENS 77.26 (0.13) 70.07 (0.28) 70.25 (0.31) 63.98 (0.38) 57.33 (0.42) 55.23 (0.43) 79.60 (0.19) 74.90 (0.49) 75.83 (0.43)
GraphBoost-GraphENS 77.48 (0.33) 70.30 (0.43) 70.58 (0.48) 65.70 (0.22) 58.85 (0.22) 56.63 (0.24) 80.26 (0.15) 75.43 (0.38) 76.38 (0.31)

6 CONCLUSION
We propose a novel framework, GraphBoost, to improve the convolution-
based classifier in imbalanced node classification tasks through gen-
erating synthetic nodes that are close to the misclassified nodes. We
use embedding of adjacency matrix to capture the topological struc-
ture information of the original graph and generate the topological
embedding as well as features of fake nodes jointly. The synthetic
nodes will then be added to the original imbalanced training data or
the training data rebalanced by other methods such as GraphENS
(SOTA). In experiemnt, it is shown that the fake nodes generated
by our framework can enhance the original GNN or achieve further
accuracy improvement based on GraphENS.

The limitation of our method can be the training time for the
generator, where VAE training in our framework generally takes
approximately 1-2 minutes to converge. The total training duration
per repetition in our experiment takes 5 to 10 minutes. Given the
extensive hyperparameter combinations, this results in a significant
tuning time. Future work could focus on enhancing our model’s
implementation efficiency or exploring alternative generator types
within our framework.
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Algorithm 1 GraphBoost: 𝐾 Stage Boosting Node Generation Algo-
rithm with GNN
Data: Adjacency matrix A, node feature X, initialized classifier 𝐶

and initialized generator 𝐺 , empty validation accuracy vector
𝑣𝑣𝑎𝑙 and 𝑣𝑣𝑎𝑙,𝑎𝑔𝑔𝑟𝑒 , dimension of LSE embedding 𝑑𝑢 , the
number of stages 𝐾 , the number of epochs 𝑇𝑐,𝑘 and 𝑇𝑔,𝑘 for 𝐶
and 𝐺 in stage 𝑘 respectively, the batch size of fake nodes 𝐵.
Optional: generator 𝐺𝑜𝑡ℎ𝑒𝑟 from other methods (e.g. the
generator in Park et al. [23]).

Output: Prediction Ỹ
Embed adjacency matrix A through LSE with dimension 𝑑𝑢 and

return embedding matrix U;
Stage 𝑘 = 1: Set epoch index 𝑖𝑡𝑒𝑟𝑇 = 0;
while 𝑖𝑡𝑒𝑟𝑇 ≤ 𝑇𝑐,1 do

(Augment A and X with synthetic nodes from 𝐺𝑜𝑡ℎ𝑒𝑟 ;)
Train 𝐶 by minimizing L𝑠𝑢𝑝 in equation 2; 𝑖𝑡𝑒𝑟𝑇 = 𝑖𝑡𝑒𝑟𝑇 + 1;

end
Save the weights of trained classifier 𝐶 in stage 𝑘 = 1;
Obtain index set of misclassified nodes in training set 𝐼𝑚𝑖𝑠 ;
𝑘 = 𝑘 + 1;

while 𝑘 ≤ 𝐾 do
Stage 𝑘: Train generator 𝐺 for 𝑇𝑔,𝑘 epochs based on target

nodes in 𝐼𝑚𝑖𝑠 through loss function 𝐿𝐺 in Section 4.1;
Set epoch index 𝑖𝑡𝑒𝑟𝑇 = 0;
while 𝑖𝑡𝑒𝑟𝑇 ≤ 𝑇𝑐,𝑘 do

(Augment A and X with synthetic nodes from other
generator 𝐺𝑜𝑡ℎ𝑒𝑟 ;)

Apply generator 𝐺 to sample feature X and embedding U of
𝐵 synthetic nodes.

Combine the fake nodes 𝑉𝐺 to the graph and obtain Ã and
X̃ from Equation 5 (equation 7 if 𝐺𝑜𝑡ℎ𝑒𝑟 is included) and
Equation for X̃ in Section 4.1;

Train𝐶 by minimizing L𝐶 in Section 3.2 ; 𝑖𝑡𝑒𝑟𝑇 = 𝑖𝑡𝑒𝑟𝑇 + 1;
end
Save the weights of trained classifier 𝐶 in stage 𝑘;
Update the misclassified index set 𝐼𝑚𝑖𝑠 as misclassified nodes in

this stage and 𝑣𝑣𝑎𝑙
𝑘

based on validation score of classifier 𝐶;
Obtain aggregate classifier 𝐶1:𝑘 (validation accuracy at each

stage, 𝑣𝑣𝑎𝑙
𝑘

, as voting weight) and update validation score of

𝐶1:𝑘 to 𝑣𝑣𝑎𝑙,𝑎𝑔𝑔𝑟𝑒
𝑘

; 𝑘 = 𝑘 + 1;
end
Select 𝐶1:𝑘 (𝑘 = 1, 2, ..., 𝐾) with best 𝑣𝑣𝑎𝑙,𝑎𝑔𝑔𝑟𝑒

𝑘
and produce

prediction 𝑌̃ based on this model. 𝑌̃ is then the Output.
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A ADDITIONAL ILLUSTRATIONS

Figure 3: The Upper, Middle, and Lower graphs represent the
node class sizes of training set in imbalanced Cora-LT, Citeseer-
LT, and Pubmed-LT, respectively. The sizes of classes show a
long tailed trend.

B ABLATION: CHOICE OF EMBEDDING
DIMENSION IN LSE

In GraphBoost, the embedding of adjacency matrix A is critical
for capturing the topological structure of the original graph. When
applying LSE, the dimension of embedding vector 𝑑𝑢 needs to be
carefully chosen. In this experiment, we apply the Bayesian infor-
mation criterion (BIC) to choose dimension 𝑑𝑢 . The formula of
BIC is 𝐵𝐼𝐶 = −2 log(𝐿) + log( 𝑛 (𝑛−1)2 )𝑑𝑢 , where log(𝐿) is the log-
likelihood of the adjacency matrix given the embedding vectors, 𝑛 is
the size of the adjacency matrix and 𝑑 is the embedding dimension.
Recall that the LSE embedding U ∈ R𝑛×𝑑𝑢 recovers a probability
matrix of node links, UU𝑇 . log(𝐿) can thus be calculated based on
the observed adjacency matrix A and estimated probability matrix
UU𝑇 . For the dataset, Cora/CiteSeer/PubMed, directly calculating
the BIC score on the whole adjacency matrix won’t provide a reason-
able result, as the adjacency matrix A is highly sparse. Therefore, we
apply a mask matrix on 𝐴 and UU𝑇 when calculating the likelihood,

such that the non-zero part of A is kept while the zero part of A is ran-
domly sampled to achieve the same size as the non-zero part. Denote
the ratio of the masked part and the original adjacency matrix size
to be 𝑟 . Such sampling will affect the log-likelihood part of log(𝐿),
thus, we will also apply 𝑟 on the penalty term. The BIC score for this
masked likelihood will then be 𝐵𝐼𝐶 = −2 log(𝐿𝑚𝑎𝑠𝑘 ) + 𝑟 log(𝑁 )𝑑𝑢 .
The BIC scores corresponding to different embedding dimensions
for Cora and CiteSeer are shown in Figure 4. The recommended di-
mensions 𝑑𝑢 for LSE embedding are 27 for the dataset CORA, 19 for
the dataset CiteSeer and 86 for PubMed, such that 𝑑𝑢 is associated
with the lowest BIC score.

Figure 4: The Upper, Middle, and Lower graphs represent the
trend of BIC score with LSE dimension 𝑑𝑢 on the adjacency
matrix of data Cora, CiteSeer, and PubMed, respectively. Di-
mension 𝑑𝑢 associated with lowest BIC score is 27 for the dataset
CORA, 19 for the dataset CiteSeer and 86 for PubMed, respec-
tively.
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